Medical Multimodal Foundation Models in Clinical Diagnosis and Treatment: Applications, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2412.02621v1
- Date: Tue, 03 Dec 2024 17:50:19 GMT
- Title: Medical Multimodal Foundation Models in Clinical Diagnosis and Treatment: Applications, Challenges, and Future Directions
- Authors: Kai Sun, Siyan Xue, Fuchun Sun, Haoran Sun, Yu Luo, Ling Wang, Siyuan Wang, Na Guo, Lei Liu, Tian Zhao, Xinzhou Wang, Lei Yang, Shuo Jin, Jun Yan, Jiahong Dong,
- Abstract summary: Recent advancements in deep learning have revolutionized the field of clinical diagnosis and treatment.<n>Medical Multimodal Foundation Models (MMFMs) are being adapted to address a wide range of clinical tasks.
- Score: 32.23790363311414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in deep learning have significantly revolutionized the field of clinical diagnosis and treatment, offering novel approaches to improve diagnostic precision and treatment efficacy across diverse clinical domains, thus driving the pursuit of precision medicine. The growing availability of multi-organ and multimodal datasets has accelerated the development of large-scale Medical Multimodal Foundation Models (MMFMs). These models, known for their strong generalization capabilities and rich representational power, are increasingly being adapted to address a wide range of clinical tasks, from early diagnosis to personalized treatment strategies. This review offers a comprehensive analysis of recent developments in MMFMs, focusing on three key aspects: datasets, model architectures, and clinical applications. We also explore the challenges and opportunities in optimizing multimodal representations and discuss how these advancements are shaping the future of healthcare by enabling improved patient outcomes and more efficient clinical workflows.
Related papers
- Empowering Medical Multi-Agents with Clinical Consultation Flow for Dynamic Diagnosis [20.59719567178192]
We propose a multi-agent framework inspired by consultation flow and reinforcement learning (RL) to simulate the entire consultation process.
Our approach incorporates a hierarchical action set, structured from clinic consultation flow and medical textbook, to effectively guide the decision-making process.
This strategy improves agent interactions, enabling them to adapt and optimize actions based on the dynamic state.
arXiv Detail & Related papers (2025-03-19T08:47:18Z) - CLIMB: Data Foundations for Large Scale Multimodal Clinical Foundation Models [27.726366396356763]
We introduce Clinical Large-Scale Integrative Multimodal Benchmark ( CLIMB)
CLIMB is a comprehensive benchmark unifying diverse clinical data across imaging, language, temporal, and graph modalities.
Pretraining on CLIMB effectively improves models' generalization capability to new tasks, and strong unimodal encoder performance translates well to multimodal performance when paired with task-appropriate fusion strategies.
arXiv Detail & Related papers (2025-03-09T01:45:05Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.
We propose a novel approach utilizing structured medical reasoning.
Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.<n>We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Pathology Foundation Models [0.0354287905099182]
Development of deep learning technologies have led to extensive research and development in pathology AI (Artificial Intelligence)
Large-scale AI models known as Foundation Models (FMs) have emerged and expanded their application scope in the healthcare field.
FMs are more accurate and applicable to a wide range of tasks compared to traditional AI.
arXiv Detail & Related papers (2024-07-31T03:58:48Z) - Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation [0.0]
Foundation models (FM) are machine or deep learning models trained on diverse data and applicable to broad use cases.
FM offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis.
This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice.
arXiv Detail & Related papers (2024-06-26T10:51:44Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
We introduce Asclepius, a novel Med-MLLM benchmark that assesses Med-MLLMs in terms of distinct medical specialties and different diagnostic capacities.<n>Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties.<n>We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - End-to-End Breast Cancer Radiotherapy Planning via LMMs with Consistency Embedding [47.360760580820966]
We present RO-LMM, a comprehensive large multimodal model (LMM) tailored for the field of radiation oncology.
This model effectively manages a series of tasks within the clinical workflow, including clinical context summarization, radiation treatment plan suggestion, and plan-guided target volume segmentation.
We present a novel Consistency Embedding Fine-Tuning (CEFTune) technique, which boosts LMM's robustness to noisy inputs while preserving the consistency of handling clean inputs.
arXiv Detail & Related papers (2023-11-27T14:49:06Z) - Multimodal Machine Learning in Image-Based and Clinical Biomedicine:
Survey and Prospects [2.1070612998322438]
The paper explores the transformative potential of multimodal models for clinical predictions.
Despite advancements, challenges such as data biases and the scarcity of "big data" in many biomedical domains persist.
arXiv Detail & Related papers (2023-11-04T05:42:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data produced during routine practice.
With the recent advances in multi-modal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multi-modal information to ultimately provide more objective, quantitative computer-aided clinical decision making?
This review will include the (1) overview of current multi-modal learning, (2) summarization of multi-modal fusion methods, (3) discussion of the performance, (4) applications in disease diagnosis and prognosis, and (5) challenges and future
arXiv Detail & Related papers (2022-03-25T18:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.