Efficient Graph Matching for Correlated Stochastic Block Models
- URL: http://arxiv.org/abs/2412.02661v1
- Date: Tue, 03 Dec 2024 18:36:45 GMT
- Title: Efficient Graph Matching for Correlated Stochastic Block Models
- Authors: Shuwen Chai, Miklós Z. Rácz,
- Abstract summary: We study learning problems on correlated block models with two balanced communities.
Our main result gives the first efficient algorithm for graph matching in this setting.
We extend this to an efficient algorithm for exact graph matching whenever this is information-theoretically possible.
- Score: 7.320365821066744
- License:
- Abstract: We study learning problems on correlated stochastic block models with two balanced communities. Our main result gives the first efficient algorithm for graph matching in this setting. In the most interesting regime where the average degree is logarithmic in the number of vertices, this algorithm correctly matches all but a vanishing fraction of vertices with high probability, whenever the edge correlation parameter $s$ satisfies $s^2 > \alpha \approx 0.338$, where $\alpha$ is Otter's tree-counting constant. Moreover, we extend this to an efficient algorithm for exact graph matching whenever this is information-theoretically possible, positively resolving an open problem of R\'acz and Sridhar (NeurIPS 2021). Our algorithm generalizes the recent breakthrough work of Mao, Wu, Xu, and Yu (STOC 2023), which is based on centered subgraph counts of a large family of trees termed chandeliers. A major technical challenge that we overcome is dealing with the additional estimation errors that are necessarily present due to the fact that, in relevant parameter regimes, the latent community partition cannot be exactly recovered from a single graph. As an application of our results, we give an efficient algorithm for exact community recovery using multiple correlated graphs in parameter regimes where it is information-theoretically impossible to do so using just a single graph.
Related papers
- A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
We provide an efficient ($epsilon,$delta$)-DP algorithm tailored specifically for such graphs.
Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters.
arXiv Detail & Related papers (2024-03-21T11:57:16Z) - Efficiently matching random inhomogeneous graphs via degree profiles [11.485620556026571]
We find an efficient matching algorithm as long as the minimal average degree is at least $Omega(log2 n)$.
Inspired by and extending the matching algorithm via degree profiles, we obtain an efficient matching algorithm as long as the minimal average degree is at least $Omega(log-2 n)$.
arXiv Detail & Related papers (2023-10-16T14:25:43Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Efficient Algorithms for Exact Graph Matching on Correlated Stochastic
Block Models with Constant Correlation [7.914348940034351]
We propose an efficient algorithm for matching graphs with community structure.
Our algorithm is the first low-order-time algorithm achieving exact matching between two correlated block models.
arXiv Detail & Related papers (2023-05-31T09:06:50Z) - Random graph matching at Otter's threshold via counting chandeliers [16.512416293014493]
We propose an efficient algorithm for graph matching based on similarity scores constructed from counting a certain family of weighted trees rooted at each.
This is the first graph matching algorithm that succeeds at an explicit constant correlation and applies to both sparse and dense graphs.
arXiv Detail & Related papers (2022-09-25T20:00:28Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
We design and analyze an algorithm that boosts the error exponent by at least 40% when $rho$ is at least $0.8$.
Our analysis hinges on judiciously exploiting the minute but detectable statistical variation of the samples to allocate more data to parts of the graph.
arXiv Detail & Related papers (2021-10-27T10:45:21Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Random Graph Matching with Improved Noise Robustness [2.294014185517203]
We propose a new algorithm for graph matching under probabilistic models.
Our algorithm recovers the underlying matching with high probability when $alpha le 1 / (log log n)C$.
This improves the condition $alpha le 1 / (log n)C$ achieved in previous work.
arXiv Detail & Related papers (2021-01-28T02:39:27Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.