論文の概要: Supercharged One-step Text-to-Image Diffusion Models with Negative Prompts
- arxiv url: http://arxiv.org/abs/2412.02687v3
- Date: Wed, 24 Sep 2025 18:51:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 16:29:06.309213
- Title: Supercharged One-step Text-to-Image Diffusion Models with Negative Prompts
- Title(参考訳): 負のプロンプトを持つ過給1ステップのテキスト・画像拡散モデル
- Authors: Viet Nguyen, Anh Nguyen, Trung Dao, Khoi Nguyen, Cuong Pham, Toan Tran, Anh Tran,
- Abstract要約: 負のプロンプトを1段階拡散モデルに統合する効率的な方法である textbfNegative-textbfAway textbfSteer textbfAttention (NASA) を導入する。
NASAは、望ましくない視覚特性を抑えるためにクロスアテンション機構を活用することで、中間表現空間内で運用している。
- 参考スコア(独自算出の注目度): 19.609393551644562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The escalating demand for real-time image synthesis has driven significant advancements in one-step diffusion models, which inherently offer expedited generation speeds compared to traditional multi-step methods. However, this enhanced efficiency is frequently accompanied by a compromise in the controllability of image attributes. While negative prompting, typically implemented via classifier-free guidance (CFG), has proven effective for fine-grained control in multi-step models, its application to one-step generators remains largely unaddressed. Due to the lack of iterative refinement, as in multi-step diffusion, directly applying CFG to one-step generation leads to blending artifacts and diminished output quality. To fill this gap, we introduce \textbf{N}egative-\textbf{A}way \textbf{S}teer \textbf{A}ttention (NASA), an efficient method that integrates negative prompts into one-step diffusion models. NASA operates within the intermediate representation space by leveraging cross-attention mechanisms to suppress undesired visual attributes. This strategy avoids the blending artifacts inherent in output-space guidance and achieves high efficiency, incurring only a minimal 1.89\% increase in FLOPs compared to the computational doubling of CFG. Furthermore, NASA can be seamlessly integrated into existing timestep distillation frameworks, enhancing the student's output quality. Experimental results demonstrate that NASA substantially improves controllability and output quality, achieving an HPSv2 score of \textbf{31.21}, setting a new state-of-the-art benchmark for one-step diffusion models.
- Abstract(参考訳): リアルタイム画像合成の需要の増大は、従来の多段階法と比較して本質的に高速な生成速度を提供する一段階拡散モデルにおいて大きな進歩をもたらした。
しかし、この高効率化はしばしば、画像属性の制御可能性の妥協を伴う。
負のプロンプトは、典型的には分類器フリーガイダンス(CFG)によって実装されるが、多段階モデルにおけるきめ細かい制御には有効であることが証明されている。
多段階拡散のように反復精製が欠如しているため、CFGを1段階生成に直接適用すると、人工物が混在し、出力品質が低下する。
このギャップを埋めるために、負のプロンプトを1ステップの拡散モデルに統合する効率的な方法である \textbf{N}egative-\textbf{A}way \textbf{S}teer \textbf{A}ttention (NASA)を導入する。
NASAは、望ましくない視覚特性を抑えるためにクロスアテンション機構を活用することで、中間表現空間内で運用している。
この戦略は、出力空間誘導に固有のブレンディングアーティファクトを回避し、CFGの計算倍増に比べてFLOPの1.89倍の最小増加しか生じず、高い効率を達成する。
さらに、NASAは既存のタイムステップ蒸留フレームワークにシームレスに統合することができ、学生の出力品質を高めることができる。
実験の結果、NASAは制御性と出力品質を大幅に改善し、HPSv2スコアのtextbf{31.21}を達成し、1段階拡散モデルの最先端ベンチマークを新たに設定した。
関連論文リスト
- Revisiting Diffusion Models: From Generative Pre-training to One-Step Generation [2.3359837623080613]
本研究は,拡散訓練を生成前訓練の一形態と見なすことができることを示す。
パラメータの85%が凍結した事前学習モデルの微調整により、ワンステップ生成モデルを作成する。
論文 参考訳(メタデータ) (2025-06-11T03:55:26Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - Efficient Diffusion as Low Light Enhancer [63.789138528062225]
RATR(Reflectance-Aware Trajectory Refinement)は、イメージの反射成分を用いて教師の軌跡を洗練するための、シンプルで効果的なモジュールである。
textbfReDDiT (textbfDistilled textbfTrajectory) は低照度画像強調(LLIE)に適した効率的で柔軟な蒸留フレームワークである。
論文 参考訳(メタデータ) (2024-10-16T08:07:18Z) - Relational Diffusion Distillation for Efficient Image Generation [27.127061578093674]
拡散モデルの高い遅延は、コンピューティングリソースの少ないエッジデバイスにおいて、その広範な応用を妨げる。
本研究では,拡散モデルの蒸留に適した新しい蒸留法である拡散蒸留(RDD)を提案する。
提案したRDDは, 最先端の蒸留蒸留法と比較すると1.47FID減少し, 256倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-10-10T07:40:51Z) - Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
蒸留不要1ステップ拡散モデルを提案する。
具体的には、敵対的訓練に参加するためのノイズ認識識別器(NAD)を提案する。
我々は、エッジ対応disTS(EA-DISTS)による知覚損失を改善し、詳細な情報を生成するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2024-10-05T16:41:36Z) - Plug-and-Play Diffusion Distillation [14.359953671470242]
誘導拡散モデルのための新しい蒸留手法を提案する。
オリジナルのテキスト・ツー・イメージモデルが凍結されている間、外部の軽量ガイドモデルがトレーニングされる。
提案手法は,クラス化なしガイド付きラテント空間拡散モデルの推論をほぼ半減することを示す。
論文 参考訳(メタデータ) (2024-06-04T04:22:47Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
複雑な多段階拡散モデルを1段階条件付きGAN学生モデルに蒸留する。
E-LatentLPIPSは,拡散モデルの潜在空間で直接動作する知覚的損失である。
我々は, 最先端の1ステップ拡散蒸留モデルよりも優れた1ステップ発生器を実証した。
論文 参考訳(メタデータ) (2024-05-09T17:59:40Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
TDCトレーニングと呼ばれる新しい2段階分割型トレーニング戦略を提案する。
タスクの類似性と難易度に基づいてタイムステップをグループ化し、高度にカスタマイズされた復調モデルを各グループに割り当て、拡散モデルの性能を向上させる。
2段階のトレーニングでは、各モデルを個別にトレーニングする必要がなくなるが、総トレーニングコストは、単一の統合されたデノナイジングモデルをトレーニングするよりもさらに低い。
論文 参考訳(メタデータ) (2023-12-20T03:32:58Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。