論文の概要: Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
- arxiv url: http://arxiv.org/abs/2412.02732v2
- Date: Mon, 03 Feb 2025 15:21:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:04:58.969006
- Title: Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
- Title(参考訳): Prithvi-EO-2.0:地球観測用マルチテンポラルファンデーションモデル
- Authors: Daniela Szwarcman, Sujit Roy, Paolo Fraccaro, Þorsteinn Elí Gíslason, Benedikt Blumenstiel, Rinki Ghosal, Pedro Henrique de Oliveira, Joao Lucas de Sousa Almeida, Rocco Sedona, Yanghui Kang, Srija Chakraborty, Sizhe Wang, Carlos Gomes, Ankur Kumar, Myscon Truong, Denys Godwin, Hyunho Lee, Chia-Yu Hsu, Ata Akbari Asanjan, Besart Mujeci, Disha Shidham, Trevor Keenan, Paulo Arevalo, Wenwen Li, Hamed Alemohammad, Pontus Olofsson, Christopher Hain, Robert Kennedy, Bianca Zadrozny, David Bell, Gabriele Cavallaro, Campbell Watson, Manil Maskey, Rahul Ramachandran, Juan Bernabe Moreno,
- Abstract要約: Prithvi-EO-2.0は、新しい地理空間基盤モデルであり、前者よりも大幅に改善されている。
これは、NASAのハーモナイズド・ランドサットとセンチネル2のデータアーカイブから、30m解像度で4.2Mのグローバル時系列サンプルで訓練されている。
6億バージョンは以前のPrithvi-EOモデルより8%上回っている。
- 参考スコア(独自算出の注目度): 5.1875922375491585
- License:
- Abstract: This technical report presents Prithvi-EO-2.0, a new geospatial foundation model that offers significant improvements over its predecessor, Prithvi-EO-1.0. Trained on 4.2M global time series samples from NASA's Harmonized Landsat and Sentinel-2 data archive at 30m resolution, the new 300M and 600M parameter models incorporate temporal and location embeddings for enhanced performance across various geospatial tasks. Through extensive benchmarking with GEO-Bench, the 600M version outperforms the previous Prithvi-EO model by 8\% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m). The results demonstrate the versatility of the model in both classical earth observation and high-resolution applications. Early involvement of end-users and subject matter experts (SMEs) are among the key factors that contributed to the project's success. In particular, SME involvement allowed for constant feedback on model and dataset design, as well as successful customization for diverse SME-led applications in disaster response, land use and crop mapping, and ecosystem dynamics monitoring. Prithvi-EO-2.0 is available on Hugging Face and IBM terratorch, with additional resources on GitHub. The project exemplifies the Trusted Open Science approach embraced by all involved organizations.
- Abstract(参考訳): この技術報告では、Prithvi-EO-1.0よりも大幅に改善された新しい地理空間基盤モデルであるPrithvi-EO-2.0を提示する。
NASAのハーモナイズド・ランドサットとセンチネル2のデータアーカイブから、30m解像度で4.2Mのグローバル時系列サンプルでトレーニングされた新しい300Mと600Mパラメータモデルは、時間的および位置的埋め込みを組み込んで、様々な地理空間的タスクにおけるパフォーマンスを向上させる。
GEO-Benchによる広範なベンチマークを通じて、600万バージョンは以前のPrithvi-EOモデルよりも8\%パフォーマンスが向上した。
また、異なる領域や解像度(0.1mから15m)からのリモートセンシングタスクをベンチマークすると、他の6つの地理空間基盤モデルよりも優れている。
この結果は、古典的な地球観測と高分解能の応用の両方において、モデルの汎用性を示すものである。
エンドユーザと課題エキスパート(SME)の早期参加は、プロジェクトの成功に寄与する重要な要因のひとつです。
特に、中小企業の関与はモデルやデータセットの設計に対する絶え間なくフィードバックを可能にし、災害対応、土地利用、作物のマッピング、生態系のダイナミクスモニタリングにおける様々な中小企業主導のアプリケーションのカスタマイズに成功した。
Prithvi-EO-2.0はHugging FaceとIBM terratorchで利用できる。
このプロジェクトは、すべての関係者が受け入れる信頼されたオープンサイエンスのアプローチを実証している。
関連論文リスト
- Evaluating Large Language Models on Spatial Tasks: A Multi-Task Benchmarking Study [4.80612909282198]
本研究では,新しいマルチタスク空間評価データセットを提案する。
データセットは、空間的理解と経路計画を含む12の異なるタスクタイプを含む。
この研究は、特定のタスクにおけるモデルパフォーマンスに対する迅速な戦略の影響を強調している。
論文 参考訳(メタデータ) (2024-08-26T17:25:16Z) - SpectralEarth: Training Hyperspectral Foundation Models at Scale [47.93167977587301]
ハイパースペクトル基礎モデルの事前学習を目的とした大規模マルチ時間データセットであるSpectralEarthを紹介する。
我々は、最先端の自己教師付き学習(SSL)アルゴリズムを用いて、SpectralEarthの一連の基礎モデルを事前訓練する。
我々は、土地被覆と収穫型マッピングのための4つの下流データセットを構築し、モデル評価のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2024-08-15T22:55:59Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
本稿では,SOOD++ と呼ばれる簡易かつ効果的な半教師付きオブジェクト指向検出手法を提案する。
具体的には、空中画像からの物体は、通常任意の向き、小さなスケール、集約である。
様々なラベル付き環境下での多目的オブジェクトデータセットに対する大規模な実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T07:03:51Z) - ORBIT: Oak Ridge Base Foundation Model for Earth System Predictability [10.88886669820126]
我々はOak Ridge Base Foundation Model for Earth System Predictability (ORBIT)を紹介する。
ORBITは、その種の最大のモデルであり、現在の気候AIファンデーションモデルサイズを1000倍に超えている。
Frontierスーパーコンピュータの性能スケーリングテストでは、ORBITは684ペタFLOPSから1.6ペタFLOPSの持続スループットを達成した。
論文 参考訳(メタデータ) (2024-04-23T03:39:57Z) - PhilEO Bench: Evaluating Geo-Spatial Foundation Models [30.02962498304698]
本稿では,EOファンデーションモデルのための新しい評価フレームワークであるPhilEO Benchを紹介する。
このフレームワークは、テストベッドと400GBのSentinel-2データセットからなる。
われわれはPrithviやSatMAEなど,異なるファンデーションモデルを評価するフレームワークを用いて実験を行った。
論文 参考訳(メタデータ) (2024-01-09T09:58:42Z) - Optimization Efficient Open-World Visual Region Recognition [55.76437190434433]
RegionSpotは、ローカライゼーション基盤モデルから位置認識ローカライゼーション知識と、ViLモデルからのセマンティック情報を統合する。
オープンワールドオブジェクト認識の実験では、私たちのRereaSpotは、以前の代替よりも大きなパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2023-11-02T16:31:49Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
本稿では,大規模データに基づく基礎モデルの事前学習と微調整を効果的に行うための第1種フレームワークを提案する。
我々はこの枠組みを利用して、マルチスペクトル衛星画像の1TB以上を事前トレーニングしたトランスフォーマーベースの基礎モデルであるPrithviを開発した。
論文 参考訳(メタデータ) (2023-10-28T10:19:55Z) - SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation [83.18930314027254]
表現的人間のポーズと形状推定(EHPS)は、身体、手、顔の動きを多数の応用で統合する。
本研究では,VT-Huge をバックボーンとする第1次一般基礎モデル (SMPLer-X) に向けた EHPS のスケールアップについて検討する。
ビッグデータと大規模モデルにより、SMPLer-Xは、さまざまなテストベンチマークにまたがる強力なパフォーマンスと、目に見えない環境への優れた転送性を示す。
論文 参考訳(メタデータ) (2023-09-29T17:58:06Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
6つの分類と6つのセグメンテーションタスクからなるベンチマークを提案する。
このベンチマークは、さまざまな地球観測タスクの進行の原動力となる。
論文 参考訳(メタデータ) (2023-06-06T16:16:05Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。