論文の概要: FLAME 3 Dataset: Unleashing the Power of Radiometric Thermal UAV Imagery for Wildfire Management
- arxiv url: http://arxiv.org/abs/2412.02831v1
- Date: Tue, 03 Dec 2024 20:53:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:47.211773
- Title: FLAME 3 Dataset: Unleashing the Power of Radiometric Thermal UAV Imagery for Wildfire Management
- Title(参考訳): FLAME 3 Dataset:Wildfire管理のための放射熱UAV画像のパワーを解放
- Authors: Bryce Hopkins, Leo ONeill, Michael Marinaccio, Eric Rowell, Russell Parsons, Sarah Flanary, Irtija Nazim, Carl Seielstad, Fatemeh Afghah,
- Abstract要約: FLAME 3は、森林火災の視覚スペクトルと放射熱画像の総合的な収集としては初めてである。
このデータセットは、放射熱画像を利用した新しい世代の機械学習モデルを促進することを目的としている。
- 参考スコア(独自算出の注目度): 3.3686755167352223
- License:
- Abstract: The increasing accessibility of radiometric thermal imaging sensors for unmanned aerial vehicles (UAVs) offers significant potential for advancing AI-driven aerial wildfire management. Radiometric imaging provides per-pixel temperature estimates, a valuable improvement over non-radiometric data that requires irradiance measurements to be converted into visible images using RGB color palettes. Despite its benefits, this technology has been underutilized largely due to a lack of available data for researchers. This study addresses this gap by introducing methods for collecting and processing synchronized visual spectrum and radiometric thermal imagery using UAVs at prescribed fires. The included imagery processing pipeline drastically simplifies and partially automates each step from data collection to neural network input. Further, we present the FLAME 3 dataset, the first comprehensive collection of side-by-side visual spectrum and radiometric thermal imagery of wildland fires. Building on our previous FLAME 1 and FLAME 2 datasets, FLAME 3 includes radiometric thermal Tag Image File Format (TIFFs) and nadir thermal plots, providing a new data type and collection method. This dataset aims to spur a new generation of machine learning models utilizing radiometric thermal imagery, potentially trivializing tasks such as aerial wildfire detection, segmentation, and assessment. A single-burn subset of FLAME 3 for computer vision applications is available on Kaggle with the full 6 burn set available to readers upon request.
- Abstract(参考訳): 無人航空機(UAV)の放射能熱画像センサーのアクセシビリティ向上は、AI駆動の空中火災管理を前進させる大きな可能性を秘めている。
放射光イメージングは、RGBカラーパレットを使用して可視画像に変換するために、放射光測定を必要とする非放射光データよりも貴重な、ピクセル当たりの温度推定を提供する。
その利点にもかかわらず、この技術は研究者が利用可能なデータがないためにほとんど使われていない。
本研究は, 所定の火災時のUAVを用いて, 同期視スペクトルと放射熱画像の収集・処理を行う手法を導入することで, このギャップを解消するものである。
含まれた画像処理パイプラインは、データ収集からニューラルネットワーク入力までの各ステップを劇的に単純化し、部分的に自動化する。
さらに,森林火災の側面・側面の視覚スペクトルと放射熱画像の総合的な収集であるFLAME 3データセットについて述べる。
前回のFLAME 1とFLAME 2データセットに基づいて構築されたFLAME 3には、放射熱タッグ画像ファイルフォーマット(TIFF)とナディア熱プロットが含まれており、新しいデータ型と収集方法を提供している。
このデータセットは、放射能熱画像を利用した新しい世代の機械学習モデルを促進することを目的としており、空中の山火事の検出、セグメンテーション、アセスメントといったタスクを自明にする可能性がある。
コンピュータビジョンアプリケーション用のFLAME 3のシングルバーンサブセットがKaggleで利用可能であり、リクエストに応じて6バーンセットのフルセットが読者に提供される。
関連論文リスト
- Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis [11.793425521298488]
本稿では,熱3D-GSという物理誘導型3次元ガウススプラッティング法を提案する。
The first large-scale benchmark dataset for this field called Thermal Infrared Novel-view Synthesis dataset (TI-NSD)。
その結果,本手法はPSNRの3.03dB改善によりベースライン法よりも優れていた。
論文 参考訳(メタデータ) (2024-09-12T13:46:53Z) - Thermal Image Calibration and Correction using Unpaired Cycle-Consistent
Adversarial Networks [5.343932820859596]
無人航空機(UAV)は、山火事の監視に柔軟で費用対効果の高いソリューションを提供する。
空中画像を用いた山火事の検出・評価のためのディープラーニングモデルの開発の進展は、既存のデータセットの可用性、サイズ、品質に制限されている。
本稿では,現在の山火事データセットの品質向上をめざして,カメラ技術の進歩に対応するソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-21T20:10:02Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence [3.3810628880631226]
本研究は,ターゲットイベントの検出のためのデータセット作成を自動化する新しい手法を提案する。
提案手法は、まず、空間帯域登録とジオレファレンスからなるパイプラインを適用することにより、生データを処理する。
Level-1C製品上で、イベント固有の最先端アルゴリズムを活用することで、ターゲットイベントを検出する。
本研究では,温熱ホットスポットを含むSentinel-2生データの最初のデータセットであるTHRawS (Thermal Hotspots in Raw Sentinel-2 data) を実現するために提案手法を適用した。
論文 参考訳(メタデータ) (2023-05-12T09:54:21Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
本稿では,LiDAR 画像検出器に追従する特徴や応答をシミュレートすることで,単一モダリティ (LiDAR) 3次元物体検出器を高速化する新しい手法を提案する。
このアプローチでは、単一モダリティ検出器をトレーニングする場合のみ、LiDARイメージデータを必要とし、十分にトレーニングされた場合には、推論時にのみLiDARデータが必要である。
nuScenesデータセットの実験結果から,本手法はSOTA LiDARのみの3D検出器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-06-30T01:44:30Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
赤外線(IR)カメラは、照明条件や照明条件が悪ければ頑丈である。
既存のUDA手法を改善するためのアルゴリズムメタ学習フレームワークを提案する。
KAISTおよびDSIACデータセットのための最先端熱検出器を作成した。
論文 参考訳(メタデータ) (2021-10-07T02:28:18Z) - Robust pedestrian detection in thermal imagery using synthesized images [39.33977680993236]
熱領域における歩行者検出を2段階に分けて改善する手法を提案する。
まず、生成データ拡張アプローチを使用し、次いで、生成されたデータを用いたドメイン適応法は、RGB歩行者検出器に適応する。
我々の検出器は,最先端技術に関して,KAIST上で最高の単一モダリティ検出結果を達成する。
論文 参考訳(メタデータ) (2021-02-03T11:08:31Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
DEVCOM Army Research Laboratory Visible-Thermal Faceデータセット(ARL-VTF)を発表します。
395人の被験者から50万枚以上の画像が得られたARL-VTFデータセットは、これまでで最大の可視画像とサーマルフェイス画像の収集データだ。
本論文では,ALL-VTFデータセットを用いたサーマルフェースランドマーク検出とサーマル・トゥ・ヴィジブルフェース検証のベンチマーク結果と分析について述べる。
論文 参考訳(メタデータ) (2021-01-07T17:17:12Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
アンダーエクスポージャー地域は、安全な自動運転のための周囲の完全な認識を構築するのに不可欠である。
サーマルカメラが利用可能になったことで、他の光学センサーが解釈可能な信号を捉えていない地域を探索するための重要な代替手段となった。
本研究は,可視光画像から熱画像へ学習を伝達するためのスタイル伝達手法を用いたドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T09:59:09Z) - Machine Learning Techniques to Detect and Characterise Whistler Radio
Waves [0.0]
VLFアンテナ受信機は、稲妻ストロークによって発生するウィスラー波を検出するために使用できる。
ホイッスルの識別と特徴化は、プラズマ圏をリアルタイムで監視する上で重要なタスクである。
本研究の目的は、VLF受信機が提供するデータ中のwhirsを自動的に検出できる機械学習ベースのモデルを開発することである。
論文 参考訳(メタデータ) (2020-02-04T12:05:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。