論文の概要: Optimized IoT Intrusion Detection using Machine Learning Technique
- arxiv url: http://arxiv.org/abs/2412.02845v1
- Date: Tue, 03 Dec 2024 21:23:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:50.584138
- Title: Optimized IoT Intrusion Detection using Machine Learning Technique
- Title(参考訳): 機械学習を用いたIoT侵入検出の最適化
- Authors: Muhammad Zawad Mahmud, Samiha Islam, Shahran Rahman Alve, Al Jubayer Pial,
- Abstract要約: 侵入検知システム(IDS)は様々な攻撃に対する防御に不可欠である。
IoT IDSシステムの機能的および物理的多様性は、重大な問題を引き起こす。
本研究は、特異性に基づくIDSに対して、新しい成分選択抽出戦略を提案し、実装する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: An application of software known as an Intrusion Detection System (IDS) employs machine algorithms to identify network intrusions. Selective logging, safeguarding privacy, reputation-based defense against numerous attacks, and dynamic response to threats are a few of the problems that intrusion identification is used to solve. The biological system known as IoT has seen a rapid increase in high dimensionality and information traffic. Self-protective mechanisms like intrusion detection systems (IDSs) are essential for defending against a variety of attacks. On the other hand, the functional and physical diversity of IoT IDS systems causes significant issues. These attributes make it troublesome and unrealistic to completely use all IoT elements and properties for IDS self-security. For peculiarity-based IDS, this study proposes and implements a novel component selection and extraction strategy (our strategy). A five-ML algorithm model-based IDS for machine learning-based networks with proper hyperparamater tuning is presented in this paper by examining how the most popular feature selection methods and classifiers are combined, such as K-Nearest Neighbors (KNN) Classifier, Decision Tree (DT) Classifier, Random Forest (RF) Classifier, Gradient Boosting Classifier, and Ada Boost Classifier. The Random Forest (RF) classifier had the highest accuracy of 99.39%. The K-Nearest Neighbor (KNN) classifier exhibited the lowest performance among the evaluated models, achieving an accuracy of 94.84%. This study's models have a significantly higher performance rate than those used in previous studies, indicating that they are more reliable.
- Abstract(参考訳): 侵入検知システム(IDS)と呼ばれるソフトウェアの応用では、ネットワーク侵入を識別するために機械アルゴリズムを用いる。
選択的なロギング、プライバシの保護、数多くの攻撃に対する評判に基づく防御、脅威に対する動的対応は、侵入識別が解決するために使用される問題のいくつかである。
IoTとして知られる生物学的システムは、高次元と情報トラフィックが急速に増加した。
侵入検知システム(IDS)のような自己防御機構は、様々な攻撃に対する防御に不可欠である。
一方、IoT IDSシステムの機能的および物理的多様性は、重大な問題を引き起こします。
これらの属性は、IDSの自己セキュリティのためにすべてのIoT要素とプロパティを完全に使用するのが面倒で非現実的です。
本研究は、特異性に基づくIDSに対して、新しい成分選択抽出戦略(我々の戦略)を提案し、実装する。
本稿では,K-Nearest Neighbors (KNN) Classifier, Decision Tree (DT) Classifier, Random Forest (RF) Classifier, Gradient Boosting Classifier, Ada Boost Classifier など,最も人気のある特徴選択手法と分類器の組み合わせについて検討した。
ランダムフォレスト(RF)分類器の精度は99.39%だった。
K-Nearest Neighbor (KNN)分類器は評価されたモデルの中で最も低い性能を示し、94.84%の精度を達成した。
本研究のモデルでは, 従来研究で使用されていたモデルよりも性能が著しく向上しており, 信頼性が高いことが示唆された。
関連論文リスト
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - Detection-Rate-Emphasized Multi-objective Evolutionary Feature Selection for Network Intrusion Detection [21.104686670216445]
ネットワーク侵入検出における特徴選択問題を3目的最適化問題としてモデル化するDR-MOFSを提案する。
ほとんどの場合、提案手法は従来の手法、すなわちより少ない特徴、より高い精度と検出率を達成できる。
論文 参考訳(メタデータ) (2024-06-13T14:42:17Z) - Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
本稿では機械学習(ML)技術を用いた侵入検知システム(IDS)の解析に焦点を当てた。
機械学習モデルのトレーニングと検証に使用されるKDD CUP-'99'侵入検出データセットを分析した。
論文 参考訳(メタデータ) (2023-10-01T06:35:37Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
モノのインターネット(IoT)ネットワークは、異常なトラフィックよりも遥かに良質なトラフィックを含んでいる。
既存研究の多くは、少数民族の検出率を向上させるために、多数民族の検出率を犠牲にすることに焦点を当てている。
我々はS2CGAN-IDSという軽量なフレームワークを提案し、データ空間と特徴空間の両方においてマイノリティなカテゴリの数を拡大する。
論文 参考訳(メタデータ) (2023-06-06T14:19:23Z) - Effective Metaheuristic Based Classifiers for Multiclass Intrusion
Detection [0.0]
侵入検知は情報システムやネットワークデバイスのセキュリティにおいて重要な役割を果たす。
大量のデータを持つことは、攻撃を検出する上で重要な問題のひとつだ。
特徴選択法は、最適な特徴を選択し、最大限の精度を達成するための鍵となる役割を担っている。
論文 参考訳(メタデータ) (2022-10-06T04:56:01Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。