MACAW: A Causal Generative Model for Medical Imaging
- URL: http://arxiv.org/abs/2412.02900v1
- Date: Tue, 03 Dec 2024 23:05:41 GMT
- Title: MACAW: A Causal Generative Model for Medical Imaging
- Authors: Vibujithan Vigneshwaran, Erik Ohara, Matthias Wilms, Nils Forkert,
- Abstract summary: This work introduces a new causal generative architecture named Masked Causal Flow (MACAW) for neuroimaging applications.
The feasibility of the proposed method was first evaluated using synthetic data and then using MRI brain data from more than 23000 participants of the UK biobank study.
- Score: 1.0653740810975534
- License:
- Abstract: Although deep learning techniques show promising results for many neuroimaging tasks in research settings, they have not yet found widespread use in clinical scenarios. One of the reasons for this problem is that many machine learning models only identify correlations between the input images and the outputs of interest, which can lead to many practical problems, such as encoding of uninformative biases and reduced explainability. Thus, recent research is exploring if integrating a priori causal knowledge into deep learning models is a potential avenue to identify these problems. This work introduces a new causal generative architecture named Masked Causal Flow (MACAW) for neuroimaging applications. Within this context, three main contributions are described. First, a novel approach that integrates complex causal structures into normalizing flows is proposed. Second, counterfactual prediction is performed to identify the changes in effect variables associated with a cause variable. Finally, an explicit Bayesian inference for classification is derived and implemented, providing an inherent uncertainty estimation. The feasibility of the proposed method was first evaluated using synthetic data and then using MRI brain data from more than 23000 participants of the UK biobank study. The evaluation results show that the proposed method can (1) accurately encode causal reasoning and generate counterfactuals highlighting the structural changes in the brain known to be associated with aging, (2) accurately predict a subject's age from a single 2D MRI slice, and (3) generate new samples assuming other values for subject-specific indicators such as age, sex, and body mass index. The code for a toy dataset is available at the following link: https://github.com/vibujithan/macaw-2D.git.
Related papers
- Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.
Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.
We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.
Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques [0.0]
We have explored machine learning approaches for predicting hearing loss thresholds on the brain's gray matter 3D images.
In the first phase, we used a 3D CNN model to reduce high-dimensional input into latent space.
In the second phase, we utilized this model to reduce input into rich features.
arXiv Detail & Related papers (2024-04-30T18:39:41Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Towards better Interpretable and Generalizable AD detection using
Collective Artificial Intelligence [0.0]
Deep learning methods have been proposed to automate diagnosis and prognosis of Alzheimer's disease.
These methods often suffer from a lack of interpretability and generalization.
We propose a novel deep framework designed to overcome these limitations.
arXiv Detail & Related papers (2022-06-07T13:02:53Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
We take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution.
We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimer's Disease Neuroimaging Initiative cohort.
We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space.
arXiv Detail & Related papers (2021-03-03T17:55:14Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.