論文の概要: Advancing Conversational Psychotherapy: Integrating Privacy, Dual-Memory, and Domain Expertise with Large Language Models
- arxiv url: http://arxiv.org/abs/2412.02987v1
- Date: Wed, 04 Dec 2024 03:02:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:10:11.256022
- Title: Advancing Conversational Psychotherapy: Integrating Privacy, Dual-Memory, and Domain Expertise with Large Language Models
- Title(参考訳): 会話型心理療法の強化:プライバシー、二重記憶、ドメインエキスパートを大規模言語モデルに統合する
- Authors: XiuYu Zhang, Zening Luo,
- Abstract要約: メンタルヘルスは、伝統的な会話精神療法の限界を明らかにする世界的な問題となっている。
心理療法へのアクセスを民主化するために設計されたLarge Language Model (LLM)対応チャットボットであるSoulSpeakを紹介する。
- 参考スコア(独自算出の注目度): 0.8563446809549775
- License:
- Abstract: Mental health has increasingly become a global issue that reveals the limitations of traditional conversational psychotherapy, constrained by location, time, expense, and privacy concerns. In response to these challenges, we introduce SoulSpeak, a Large Language Model (LLM)-enabled chatbot designed to democratize access to psychotherapy. SoulSpeak improves upon the capabilities of standard LLM-enabled chatbots by incorporating a novel dual-memory component that combines short-term and long-term context via Retrieval Augmented Generation (RAG) to offer personalized responses while ensuring the preservation of user privacy and intimacy through a dedicated privacy module. In addition, it leverages a counseling chat dataset of therapist-client interactions and various prompting techniques to align the generated responses with psychotherapeutic methods. We introduce two fine-tuned BERT models to evaluate the system against existing LLMs and human therapists: the Conversational Psychotherapy Preference Model (CPPM) to simulate human preference among responses and another to assess response relevance to user input. CPPM is useful for training and evaluating psychotherapy-focused language models independent from SoulSpeak, helping with the constrained resources available for psychotherapy. Furthermore, the effectiveness of the dual-memory component and the robustness of the privacy module are also examined. Our findings highlight the potential and challenge of enhancing mental health care by offering an alternative that combines the expertise of traditional therapy with the advantages of LLMs, providing a promising way to address the accessibility and personalization gap in current mental health services.
- Abstract(参考訳): メンタルヘルスは、場所、時間、費用、プライバシーの懸念によって制約される伝統的な会話精神療法の限界を明らかにする世界的な問題になりつつある。
これらの課題に対応するために,心理療法へのアクセスを民主化するためのLarge Language Model (LLM)対応チャットボットであるSoulSpeakを紹介した。
SoulSpeakは、Retrieval Augmented Generation (RAG)を介して短期的および長期的コンテキストを組み合わせた新しいデュアルメモリコンポーネントを導入し、パーソナライズされた応答を提供すると同時に、専用のプライバシモジュールを通じてユーザのプライバシと親密性の保護を保証することで、標準のLLM対応チャットボットの機能を改善する。
さらに、セラピストとクライアントの相互作用をカウンセリングするチャットデータセットと、生成された応答を心理療法の手法と整合させる様々なプロンプト技術を活用している。
本稿では,既存のLCMとヒトセラピストに対するシステム評価のための2つの細調整BERTモデルを紹介し,その1つとして,対話型心理療法選好モデル(CPPM)とユーザ入力に対する反応関連性を評価する。
CPPMは、SulSpeakとは独立して精神療法に焦点を当てた言語モデルの訓練と評価に有用であり、精神療法に利用可能な制約されたリソースを支援する。
さらに、二重メモリコンポーネントの有効性とプライバシモジュールの堅牢性についても検討した。
本研究は、従来の治療の専門知識とLCMの利点を融合した代替手段を提供することで、現在のメンタルヘルスサービスにおけるアクセシビリティとパーソナライゼーションのギャップに対処する有望な方法を提供することによって、メンタルヘルスの強化の可能性と課題を浮き彫りにしている。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
我々は, GPT-4 のような大規模言語モデル (LLM) を用いて, 心理的コンサルテーションサービスの強化について検討する。
提案手法では,ユーザ入力に動的に適応する新しい階層型プロンプトシステムを提案する。
また,LLMの感情的インテリジェンスを高めるために,共感とシナリオに基づくプロンプトを開発する。
論文 参考訳(メタデータ) (2024-08-29T05:47:14Z) - Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
本稿では,カウンセラーとクライアントの相互作用をシミュレートするためのロールプレイングを通じて,2つの大きな言語モデル(LLM)を利用するフレームワークを提案する。
我々のフレームワークは2つのLCMで構成され、1つは特定の実生活のユーザープロファイルを備えたクライアントとして機能し、もう1つは経験豊富なカウンセラーとして機能する。
論文 参考訳(メタデータ) (2024-08-28T13:29:59Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - LLM-based Conversational AI Therapist for Daily Functioning Screening and Psychotherapeutic Intervention via Everyday Smart Devices [7.43530731987025]
精神療法介入(CaiTI)を用いた会話型AIセラピストを提案する。
CaiTIは、自然と精神療法の会話を使って日々の機能を確認することができる。
会話中にユーザーがさらなる注意を必要とする場合、CaiTIは会話による精神療法の介入を提供することができる。
論文 参考訳(メタデータ) (2024-03-16T02:48:50Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
メンタルエンハンスメント(HealMe)モデルにおける適応言語によるヘルピングとエンパワーメントについて紹介する。
この新しい認知的リフレーミング療法は、根深い否定的思考に効果的に対処し、合理的でバランスの取れた視点を育む。
我々は、認知リフレーミングのパフォーマンスを厳格に評価するために特別に設計された、包括的で専門的な心理学的評価指標を採用した。
論文 参考訳(メタデータ) (2024-02-26T09:10:34Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
本研究では,高機能自閉症青年に対する対話型言語治療におけるLarge Language Models(LLMs)の有効性について検討した。
LLMは、従来の心理学的カウンセリング手法を強化する新しい機会を提供する。
論文 参考訳(メタデータ) (2023-11-12T07:55:39Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Automated Quality Assessment of Cognitive Behavioral Therapy Sessions
Through Highly Contextualized Language Representations [34.670548892766625]
認知行動療法(Cognitive Behavioral Therapy, CBT)という,特定の心理療法の行動自動スコアリングモデルを提案する。
このモデルは高い解釈可能性を達成するためにマルチタスクで訓練される。
BERTベースの表現は、利用可能な治療メタデータでさらに拡張され、関連する非言語的コンテキストを提供し、一貫したパフォーマンス改善につながります。
論文 参考訳(メタデータ) (2021-02-23T09:22:29Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。