論文の概要: ASIGN: An Anatomy-aware Spatial Imputation Graphic Network for 3D Spatial Transcriptomics
- arxiv url: http://arxiv.org/abs/2412.03026v1
- Date: Wed, 04 Dec 2024 04:38:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:21.344382
- Title: ASIGN: An Anatomy-aware Spatial Imputation Graphic Network for 3D Spatial Transcriptomics
- Title(参考訳): ASIGN:三次元空間転写学のための解剖学的空間インプットグラフネットワーク
- Authors: Junchao Zhu, Ruining Deng, Tianyuan Yao, Juming Xiong, Chongyu Qu, Junlin Guo, Siqi Lu, Mengmeng Yin, Yu Wang, Shilin Zhao, Haichun Yang, Yuankai Huo,
- Abstract要約: 本稿では3次元空間転写学モデリングのための解剖学的認識型空間インプットグラフネットワーク(ASIGN)を提案する。
ASIGNは、層間オーバーラップと類似性に基づく拡張を利用して、既存の2次元空間関係を3Dに拡張する。
ASIGNは2Dシナリオと3Dシナリオの両方で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 5.474354494412759
- License:
- Abstract: Spatial transcriptomics (ST) is an emerging technology that enables medical computer vision scientists to automatically interpret the molecular profiles underlying morphological features. Currently, however, most deep learning-based ST analyses are limited to two-dimensional (2D) sections, which can introduce diagnostic errors due to the heterogeneity of pathological tissues across 3D sections. Expanding ST to three-dimensional (3D) volumes is challenging due to the prohibitive costs; a 2D ST acquisition already costs over 50 times more than whole slide imaging (WSI), and a full 3D volume with 10 sections can be an order of magnitude more expensive. To reduce costs, scientists have attempted to predict ST data directly from WSI without performing actual ST acquisition. However, these methods typically yield unsatisfying results. To address this, we introduce a novel problem setting: 3D ST imputation using 3D WSI histology sections combined with a single 2D ST slide. To do so, we present the Anatomy-aware Spatial Imputation Graph Network (ASIGN) for more precise, yet affordable, 3D ST modeling. The ASIGN architecture extends existing 2D spatial relationships into 3D by leveraging cross-layer overlap and similarity-based expansion. Moreover, a multi-level spatial attention graph network integrates features comprehensively across different data sources. We evaluated ASIGN on three public spatial transcriptomics datasets, with experimental results demonstrating that ASIGN achieves state-of-the-art performance on both 2D and 3D scenarios. Code is available at https://github.com/hrlblab/ASIGN.
- Abstract(参考訳): 空間転写学(Spatial transcriptomics、ST)は、医学コンピュータビジョンの科学者が、形態的特徴を基盤とする分子プロファイルを自動的に解釈できる新しい技術である。
しかし、現在、多くの深層学習に基づくST分析は2次元(2次元)領域に限られており、3次元領域にわたる病理組織の不均一性による診断誤差を生じさせる可能性がある。
2D STの買収は、スライド画像全体(WSI)の50倍以上の費用がかかり、また10セクションのフル3Dボリュームは、桁違いに高価になる可能性がある。
コスト削減のために、科学者は実際のST取得を行うことなく、WSIから直接STデータを予測しようとした。
しかし、これらの手法は典型的には不満足な結果をもたらす。
そこで本研究では,3次元WSIヒストロジーセクションと1つの2次元STスライドを組み合わせた3次元ST計算法を提案する。
そこで我々は、より正確で安価な3次元STモデリングのために、解剖学的に認識された空間インプットグラフネットワーク(ASIGN)を提示する。
ASIGNアーキテクチャは、層間オーバーラップと類似性に基づく拡張を利用して、既存の2次元空間関係を3Dに拡張する。
さらに,マルチレベル空間アテンショングラフネットワークは,複数のデータソースを包括的に統合する。
我々は,ASIGNを3つの空間転写学的データセット上で評価し,ASIGNが2次元および3次元のシナリオで最先端の性能を達成することを示す実験結果を得た。
コードはhttps://github.com/hrlblab/ASIGN.comで入手できる。
関連論文リスト
- Cross-Dimensional Medical Self-Supervised Representation Learning Based on a Pseudo-3D Transformation [68.60747298865394]
擬似3D変換(CDSSL-P3D)に基づく新しい三次元SSLフレームワークを提案する。
具体的には、2D画像を3Dデータに整合したフォーマットに変換するim2colアルゴリズムに基づく画像変換を提案する。
この変換は2次元および3次元データのシームレスな統合を可能にし、3次元医用画像解析のための相互教師あり学習を容易にする。
論文 参考訳(メタデータ) (2024-06-03T02:57:25Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retinal OCT Images with Full
and Sparse Annotations [32.69359482975795]
本研究は, ハイブリッド2D-3D畳み込みニューラルネットワーク(CNN)を基盤として, OCTボリュームから連続した3次元網膜層表面を得るための新しい枠組みを提案する。
人工的データセットと3つのパブリックな臨床データセットの実験により、我々のフレームワークは、潜在的運動補正のためにBスキャンを効果的に調整できることを示した。
論文 参考訳(メタデータ) (2023-12-04T08:32:31Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
本稿では,2次元CNNにおける3次元特徴をエンコードする2次元モデルSlice SHift UNetを提案する。
より正確にマルチビュー機能は、ボリュームの3次元平面に沿って2次元の畳み込みを実行することで協調的に学習される。
提案手法の有効性は,多モード腹部多臓器軸 (AMOS) と Cranial Vault (BTCV) データセットを越えたマルチアトラスラベリング (Multi-Atlas Labeling Beyond the Cranial Vault) で検証した。
論文 参考訳(メタデータ) (2023-07-24T14:53:23Z) - Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
ラベル効率のよい3D-to-2Dセグメンテーションのための新しい畳み込みニューラルネットワーク(CNN)と自己教師付き学習(SSL)手法を提案する。
異なるデータセットの結果から、提案されたCNNは、ラベル付きデータに制限のあるシナリオにおいて、Diceスコアの最大8%まで、アートの状態を著しく改善することが示された。
論文 参考訳(メタデータ) (2023-07-06T14:16:25Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Joint Self-Supervised Image-Volume Representation Learning with
Intra-Inter Contrastive Clustering [31.52291149830299]
自己教師付き学習は、ラベル付きデータから特徴表現を学習することで、ラベル付きトレーニングサンプルの欠如を克服することができる。
現在の医療分野におけるSSL技術のほとんどは、2D画像または3Dボリュームのために設計されている。
本研究では2次元および3次元データモダリティの教師なし共同学習のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T18:57:44Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
トレーニング中に3次元知識を効率的に埋め込んで3次元データを扱うための,シンプルで効果的な2次元手法を提案する。
本手法は3次元画像にスライスを並べて超高分解能画像を生成する。
2次元ネットワークのみを利用した3次元ネットワークを実現する一方で、モデルの複雑さはおよそ3倍に減少する。
論文 参考訳(メタデータ) (2022-05-05T09:59:03Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
本稿では,これらの課題に効果的に取り組むために,新しい3Dベースの粗粒度フレームワークを提案する。
提案した3Dベースのフレームワークは、3つの軸すべてに沿ってリッチな空間情報を活用できるため、2Dよりも大きなマージンで優れている。
我々は,3つのデータセット,NIH膵データセット,JHMI膵データセット,JHMI病理嚢胞データセットについて実験を行った。
論文 参考訳(メタデータ) (2020-10-29T15:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。