論文の概要: AI-driven 3D Spatial Transcriptomics
- arxiv url: http://arxiv.org/abs/2502.17761v1
- Date: Tue, 25 Feb 2025 01:31:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:29.066374
- Title: AI-driven 3D Spatial Transcriptomics
- Title(参考訳): AI駆動型3次元空間転写学
- Authors: Cristina Almagro-Pérez, Andrew H. Song, Luca Weishaupt, Ahrong Kim, Guillaume Jaume, Drew F. K. Williamson, Konstantin Hemker, Ming Y. Lu, Kritika Singh, Bowen Chen, Long Phi Le, Alexander S. Baras, Sizun Jiang, Ali Bashashati, Jonathan T. C. Liu, Faisal Mahmood,
- Abstract要約: 本稿では,3次元組織形態と最小2次元STを利用したAIフレームワークVORTEXを提案する。
VORTEXは、遺伝子発現の一般的な組織関連およびサンプル特異的な形態的相関の両方を学習する。
低コストで最小限に破壊的な方法で体積分子の洞察を得ることにより、VORTEXはバイオマーカーの発見を加速すると予想する。
- 参考スコア(独自算出の注目度): 38.59657032975772
- License:
- Abstract: A comprehensive three-dimensional (3D) map of tissue architecture and gene expression is crucial for illuminating the complexity and heterogeneity of tissues across diverse biomedical applications. However, most spatial transcriptomics (ST) approaches remain limited to two-dimensional (2D) sections of tissue. Although current 3D ST methods hold promise, they typically require extensive tissue sectioning, are complex, are not compatible with non-destructive 3D tissue imaging technologies, and often lack scalability. Here, we present VOlumetrically Resolved Transcriptomics EXpression (VORTEX), an AI framework that leverages 3D tissue morphology and minimal 2D ST to predict volumetric 3D ST. By pretraining on diverse 3D morphology-transcriptomic pairs from heterogeneous tissue samples and then fine-tuning on minimal 2D ST data from a specific volume of interest, VORTEX learns both generic tissue-related and sample-specific morphological correlates of gene expression. This approach enables dense, high-throughput, and fast 3D ST, scaling seamlessly to large tissue volumes far beyond the reach of existing 3D ST techniques. By offering a cost-effective and minimally destructive route to obtaining volumetric molecular insights, we anticipate that VORTEX will accelerate biomarker discovery and our understanding of morphomolecular associations and cell states in complex tissues. Interactive 3D ST volumes can be viewed at https://vortex-demo.github.io/
- Abstract(参考訳): 組織構造と遺伝子発現の包括的3次元マップは、多様な生体医学的応用にまたがる組織の複雑さと不均一性を明らかにするために重要である。
しかし、ほとんどの空間転写学(ST)アプローチは、組織の2次元(2D)セクションに限られている。
現行の3D ST法は将来性があるが、通常は広範囲の組織分割が必要であり、複雑であり、非破壊的な3D組織イメージング技術と互換性がなく、スケーラビリティに欠けることが多い。
本稿では,3次元組織形態と最小2次元STを利用して体積3次元STを予測するAIフレームワークVORTEXについて述べる。
このアプローチは、高スループットで高速な3D STを可能にし、既存の3D ST技術の範囲を超えて、大きな組織体積にシームレスにスケーリングする。
バイオマーカーの発見と複雑な組織における形態分子の関連や細胞状態の理解を,VORTEXが加速すると予想する。
インタラクティブな3D STボリュームはhttps://vortex-demo.github.io/で見ることができる。
関連論文リスト
- ASIGN: An Anatomy-aware Spatial Imputation Graphic Network for 3D Spatial Transcriptomics [5.474354494412759]
本稿では3次元空間転写学モデリングのための解剖学的認識型空間インプットグラフネットワーク(ASIGN)を提案する。
ASIGNは、層間オーバーラップと類似性に基づく拡張を利用して、既存の2次元空間関係を3Dに拡張する。
ASIGNは2Dシナリオと3Dシナリオの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-04T04:38:45Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGSは、教師なしセマンティック組み込み3DGSフレームワークで、2Dラベルを必要とせずに、ビュー一貫性のある3Dシーン理解を実現する。
我々は、FreeGSが複雑なデータ前処理作業の負荷を回避しつつ、最先端のメソッドと互換性があることを示す。
論文 参考訳(メタデータ) (2024-11-29T08:52:32Z) - Multi-Layer Gaussian Splatting for Immersive Anatomy Visualization [1.0580610673031074]
医用画像の可視化において、CTスキャンのような体積医学データのパストレースは、生命に似た可視化を生成する。
本稿では,CTスキャンの高速かつ静的な中間表現を実現するために,GSを用いた新しい手法を提案する。
本手法は,対象ハードウェアに品質を調整可能な解剖学的構造を保ちながら,インタラクティブなフレームレートを実現する。
論文 参考訳(メタデータ) (2024-10-22T12:56:58Z) - Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion [31.736235596070937]
軽量マルチサロゲート融合(MSF)を用いた新しい3DセグメンテーションフレームワークMSFSegを提案する。
MSFSegは、1つまたは数個の注釈付き2Dスライスまたは3Dシーケンスセグメントを備えた、目に見えない3Dオブジェクト/組織(トレーニング中)を自動的に分割することができる。
提案するMSFモジュールは, ラベル付きスライスと少数のラベル付きスライス/シーケンス間の包括的および多彩な相関関係を, 複数の指定されたサロゲートを介して抽出する。
論文 参考訳(メタデータ) (2024-08-26T17:15:37Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in
Multiple Anatomical Locations [1.7413461132662074]
3次元病変分割のためのMDU-ST(multi-dimension unified Swin transformer)と呼ばれる新しいモデルを提案する。
ネットワークの性能はDice similarity coefficient(DSC)とHausdorff distance(HD)で内部の3D病変データセットを用いて評価される。
提案手法は, 放射線学および腫瘍成長モデル研究を支援するために, 自動3次元病変セグメンテーションを行うために用いられる。
論文 参考訳(メタデータ) (2023-09-04T21:24:00Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTetは粗いボクセルのような単純なユーザーガイドを用いて高解像度の3次元形状を合成できる条件付き生成モデルである。
メッシュなどの明示的な表現を直接生成する深部3次元生成モデルとは異なり、我々のモデルは任意の位相で形状を合成することができる。
論文 参考訳(メタデータ) (2021-11-08T05:29:35Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Map3D: Registration Based Multi-Object Tracking on 3D Serial Whole Slide
Images [10.519063258650508]
本稿では,3Dオブジェクトの大規模断面の自動同定と関連付けを行う3D(Map3D)手法を提案する。
提案手法はMOTA=44.6であり,非ディープラーニングベンチマークよりも12.1%高い。
論文 参考訳(メタデータ) (2020-06-10T19:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。