Point-GR: Graph Residual Point Cloud Network for 3D Object Classification and Segmentation
- URL: http://arxiv.org/abs/2412.03052v1
- Date: Wed, 04 Dec 2024 06:12:19 GMT
- Title: Point-GR: Graph Residual Point Cloud Network for 3D Object Classification and Segmentation
- Authors: Md Meraz, Md Afzal Ansari, Mohammed Javed, Pavan Chakraborty,
- Abstract summary: This paper presents Point-GR, a novel deep learning architecture designed explicitly to transform unordered raw point clouds into higher dimensions.
It introduces residual-based learning within the network to mitigate the point permutation issues in point cloud data.
It achieves a state-of-the-art scene segmentation mean IoU of 73.47% on the S3DIS benchmark dataset, showcasing its effectiveness.
- Score: 2.4999074238880485
- License:
- Abstract: In recent years, the challenge of 3D shape analysis within point cloud data has gathered significant attention in computer vision. Addressing the complexities of effective 3D information representation and meaningful feature extraction for classification tasks remains crucial. This paper presents Point-GR, a novel deep learning architecture designed explicitly to transform unordered raw point clouds into higher dimensions while preserving local geometric features. It introduces residual-based learning within the network to mitigate the point permutation issues in point cloud data. The proposed Point-GR network significantly reduced the number of network parameters in Classification and Part-Segmentation compared to baseline graph-based networks. Notably, the Point-GR model achieves a state-of-the-art scene segmentation mean IoU of 73.47% on the S3DIS benchmark dataset, showcasing its effectiveness. Furthermore, the model shows competitive results in Classification and Part-Segmentation tasks.
Related papers
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - PointResNet: Residual Network for 3D Point Cloud Segmentation and
Classification [18.466814193413487]
Point cloud segmentation and classification are some of the primary tasks in 3D computer vision.
In this paper, we propose PointResNet, a residual block-based approach.
Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks.
arXiv Detail & Related papers (2022-11-20T17:39:48Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices [27.048998326468688]
Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images.
Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input.
We present results of 3D segmentation on multiple datasets where our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-08-09T10:17:27Z) - Learning point embedding for 3D data processing [2.12121796606941]
Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
arXiv Detail & Related papers (2021-07-19T00:25:28Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
We introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings.
Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset.
arXiv Detail & Related papers (2021-04-07T23:13:56Z) - PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud
Segmentation [0.9137554315375922]
We propose a inception based deep network architecture called PIG-Net, that effectively characterizes the local and global geometric details of the point clouds.
We perform an exhaustive experimental analysis of the PIG-Net architecture on two state-of-the-art datasets.
arXiv Detail & Related papers (2021-01-28T13:27:55Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.