Real-Time AIoT for UAV Antenna Interference Detection via Edge-Cloud Collaboration
- URL: http://arxiv.org/abs/2412.03055v1
- Date: Wed, 04 Dec 2024 06:20:36 GMT
- Title: Real-Time AIoT for UAV Antenna Interference Detection via Edge-Cloud Collaboration
- Authors: Jun Dong, Jintao Cheng, Jin Wu, Chengxi Zhang, Shunyi Zhao, Xiaoyu Tang,
- Abstract summary: In fifth-generation (5G) era, eliminating communication interference sources is crucial for maintaining network performance.
We propose a computer vision-based AI of Things system to detect antenna interference sources for UAVs.
System achieves state-of-the-art (SOTA) performance with a mean average precision (mAP) of 42.1% on our custom antenna interference source dataset.
- Score: 6.7233672503362545
- License:
- Abstract: In the fifth-generation (5G) era, eliminating communication interference sources is crucial for maintaining network performance. Interference often originates from unauthorized or malfunctioning antennas, and radio monitoring agencies must address numerous sources of such antennas annually. Unmanned aerial vehicles (UAVs) can improve inspection efficiency. However, the data transmission delay in the existing cloud-only (CO) artificial intelligence (AI) mode fails to meet the low latency requirements for real-time performance. Therefore, we propose a computer vision-based AI of Things (AIoT) system to detect antenna interference sources for UAVs. The system adopts an optimized edge-cloud collaboration (ECC+) mode, combining a keyframe selection algorithm (KSA), focusing on reducing end-to-end latency (E2EL) and ensuring reliable data transmission, which aligns with the core principles of ultra-reliable low-latency communication (URLLC). At the core of our approach is an end-to-end antenna localization scheme based on the tracking-by-detection (TBD) paradigm, including a detector (EdgeAnt) and a tracker (AntSort). EdgeAnt achieves state-of-the-art (SOTA) performance with a mean average precision (mAP) of 42.1% on our custom antenna interference source dataset, requiring only 3 million parameters and 14.7 GFLOPs. On the COCO dataset, EdgeAnt achieves 38.9% mAP with 5.4 GFLOPs. We deployed EdgeAnt on Jetson Xavier NX (TRT) and Raspberry Pi 4B (NCNN), achieving real-time inference speeds of 21.1 (1088) and 4.8 (640) frames per second (FPS), respectively. Compared with CO mode, the ECC+ mode reduces E2EL by 88.9%, increases accuracy by 28.2%. Additionally, the system offers excellent scalability for coordinated multiple UAVs inspections. The detector code is publicly available at https://github.com/SCNU-RISLAB/EdgeAnt.
Related papers
- UAV Virtual Antenna Array Deployment for Uplink Interference Mitigation in Data Collection Networks [71.23793087286703]
Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications.
This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems.
arXiv Detail & Related papers (2024-12-09T12:56:50Z) - Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach [10.115361454176773]
Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs)
We consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility.
We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent's observation space.
arXiv Detail & Related papers (2024-11-21T09:34:48Z) - Robust Low-Cost Drone Detection and Classification in Low SNR Environments [0.9087641068861043]
We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones.
We demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna.
arXiv Detail & Related papers (2024-06-26T12:50:55Z) - YOLO-Ant: A Lightweight Detector via Depthwise Separable Convolutional
and Large Kernel Design for Antenna Interference Source Detection [8.184096371244175]
We introduce YOLO-Ant, a lightweight CNN and transformer hybrid detector for antenna interference source detection.
We propose a DSLK-Block module based on depthwise separable convolution and large convolution kernels to enhance the network's feature extraction ability.
To address challenges such as complex backgrounds and large interclass differences in antenna detection, we construct DSLKVit-Block.
arXiv Detail & Related papers (2024-02-20T01:35:23Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Ultra-low Power Deep Learning-based Monocular Relative Localization
Onboard Nano-quadrotors [64.68349896377629]
This work presents a novel autonomous end-to-end system that addresses the monocular relative localization, through deep neural networks (DNNs), of two peer nano-drones.
To cope with the ultra-constrained nano-drone platform, we propose a vertically-integrated framework, including dataset augmentation, quantization, and system optimizations.
Experimental results show that our DNN can precisely localize a 10cm-size target nano-drone by employing only low-resolution monochrome images, up to 2m distance.
arXiv Detail & Related papers (2023-03-03T14:14:08Z) - Digital Beamforming Robust to Time-Varying Carrier Frequency Offset [21.18926642388997]
We present novel beamforming algorithms that are robust to signal corruptions arising from a time-variant carrier frequency offset.
We propose two atomic-norm-minimization (ANM)-based methods to design a weight vector that can be used to cancel interference when there exist unknown time-varying frequency drift in the pilot and interferer signals.
arXiv Detail & Related papers (2021-03-08T18:08:56Z) - Integrating LEO Satellites and Multi-UAV Reinforcement Learning for
Hybrid FSO/RF Non-Terrestrial Networks [55.776497048509185]
A mega-constellation of low-altitude earth orbit satellites (SATs) and burgeoning unmanned aerial vehicles (UAVs) are promising enablers for high-speed and long-distance communications in beyond fifth-generation (5G) systems.
We investigate the problem of forwarding packets between two faraway ground terminals through SAT and UAV relays using either millimeter-wave (mmWave) radio-frequency (RF) or free-space optical (FSO) link.
arXiv Detail & Related papers (2020-10-20T09:07:10Z) - Blind Federated Edge Learning [93.29571175702735]
We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model.
We propose an analog over-the-air' aggregation scheme, in which the devices transmit their local updates in an uncoded fashion.
arXiv Detail & Related papers (2020-10-19T16:22:28Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.