ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning
- URL: http://arxiv.org/abs/2412.03104v2
- Date: Wed, 01 Jan 2025 07:23:17 GMT
- Title: ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning
- Authors: Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jianjun Chen, Rui Shi, Dan Pei,
- Abstract summary: This paper introduces ChatTS, a novel MLLM designed for time series analysis.
ChatTS treats time series as a modality, similar to how vision MLLMs process images.
Time Series Evol-Instruct generates diverse time series Q&As, enhancing the model's reasoning capabilities.
- Score: 10.854285913078257
- License:
- Abstract: Understanding time series is crucial for its application in real-world scenarios. Recently, large language models (LLMs) have been increasingly applied to time series tasks, leveraging their strong language capabilities to enhance various applications. However, research on multimodal LLMs (MLLMs) for time series understanding and reasoning remains limited, primarily due to the scarcity of high-quality datasets that align time series with textual information. This paper introduces ChatTS, a novel MLLM designed for time series analysis. ChatTS treats time series as a modality, similar to how vision MLLMs process images, enabling it to perform both understanding and reasoning with time series. To address the scarcity of training data, we propose an attribute-based method for generating synthetic time series with detailed attribute descriptions. We further introduce Time Series Evol-Instruct, a novel approach that generates diverse time series Q&As, enhancing the model's reasoning capabilities. To the best of our knowledge, ChatTS is the first TS-MLLM that takes multivariate time series as input for understanding and reasoning, which is fine-tuned exclusively on synthetic datasets. We evaluate its performance using benchmark datasets with real-world data, including six alignment tasks and four reasoning tasks. Our results show that ChatTS significantly outperforms existing vision-based MLLMs (e.g., GPT-4o) and text/agent-based LLMs, achieving a 46.0% improvement in alignment tasks and a 25.8% improvement in reasoning tasks.
Related papers
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
Texts as Time Series (TaTS) considers the time-series-paired texts to be auxiliary variables of the time series.
TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively.
arXiv Detail & Related papers (2025-02-13T03:43:27Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
We argue that multimodal language models (MLLMs) can enable more powerful and flexible reasoning for time series analysis.
We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs.
arXiv Detail & Related papers (2025-02-03T16:10:48Z) - Time Series Language Model for Descriptive Caption Generation [11.796431549951055]
We introduce TSLM, a novel time series language model designed specifically for time series captioning.
TSLM operates as an encoder-decoder model, leveraging both text prompts and time series data representations.
We show that TSLM outperforms existing state-of-the-art approaches from multiple data modalities by a significant margin.
arXiv Detail & Related papers (2025-01-03T14:34:30Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTime is a hierarchical multi-modal model that seamlessly integrates temporal information into large language models.
Our findings highlight the potential of integrating temporal features into LLMs, paving the way for advanced time series analysis.
arXiv Detail & Related papers (2024-10-24T12:32:19Z) - Evaluating Large Language Models on Time Series Feature Understanding: A Comprehensive Taxonomy and Benchmark [13.490168087823992]
Large Language Models (LLMs) offer the potential for automatic time series analysis and reporting.
We introduce a comprehensive taxonomy of time series features, a critical framework that delineates various characteristics inherent in time series data.
This dataset acts as a solid foundation for assessing the proficiency of LLMs in comprehending time series.
arXiv Detail & Related papers (2024-04-25T12:24:37Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Large Language Models for Time Series: A Survey [34.24258745427964]
Large Language Models (LLMs) have seen significant use in domains such as natural language processing and computer vision.
LLMs present a significant potential for analysis of time series data, benefiting domains such as climate, IoT, healthcare, traffic, audio and finance.
arXiv Detail & Related papers (2024-02-02T07:24:35Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters [11.796765525301051]
We propose a framework for time-series forecasting with pre-trained Large Language Models (LLMs)
LLM4TS consists of a two-stage fine-tuning strategy to align LLMs with the nuances of time-series data, and the forecasting fine-tuning stage for downstream time-series forecasting tasks.
Our framework features a novel two-level aggregation method that integrates multi-scale temporal data within pre-trained LLMs, enhancing their ability to interpret time-specific information.
arXiv Detail & Related papers (2023-08-16T16:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.