論文の概要: Short-reach Optical Communications: A Real-world Task for Neuromorphic Hardware
- arxiv url: http://arxiv.org/abs/2412.03129v1
- Date: Wed, 04 Dec 2024 08:46:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:29.676782
- Title: Short-reach Optical Communications: A Real-world Task for Neuromorphic Hardware
- Title(参考訳): 短距離光通信:ニューロモルフィックハードウェアの現実的課題
- Authors: Elias Arnold, Eike-Manuel Edelmann, Alexander von Bank, Eric Müller, Laurent Schmalen, Johannes Schemmel,
- Abstract要約: 専用のニューロモルフィックアクセラレーターにエミュレートされたスパイキングニューラルネットワーク(SNN)は、エネルギー効率のよい信号処理を提供する。
ここでは、データセンターで使用される高速光通信システムに関連する、強度変調、直接検出(IM/DD)タスクについて述べる。
- 参考スコア(独自算出の注目度): 42.043435071139434
- License:
- Abstract: Spiking neural networks (SNNs) emulated on dedicated neuromorphic accelerators promise to offer energy-efficient signal processing. However, the neuromorphic advantage over traditional algorithms still remains to be demonstrated in real-world applications. Here, we describe an intensity-modulation, direct-detection (IM/DD) task that is relevant to high-speed optical communication systems used in data centers. Compared to other machine learning-inspired benchmarks, the task offers several advantages. First, the dataset is inherently time-dependent, i.e., there is a time dimension that can be natively mapped to the dynamic evolution of SNNs. Second, small-scale SNNs can achieve the target accuracy required by technical communication standards. Third, due to the small scale and the defined target accuracy, the task facilitates the optimization for real-world aspects, such as energy efficiency, resource requirements, and system complexity.
- Abstract(参考訳): 専用のニューロモルフィックアクセラレーターにエミュレートされたスパイキングニューラルネットワーク(SNN)は、エネルギー効率のよい信号処理を提供する。
しかし、従来のアルゴリズムに対するニューロモルフィックの優位性は、まだ実世界の応用で実証されていない。
ここでは、データセンターで使用される高速光通信システムに関連する、強度変調、直接検出(IM/DD)タスクについて述べる。
他の機械学習にインスパイアされたベンチマークと比較すると、このタスクにはいくつかの利点がある。
まず、データセットは本質的に時間依存であり、SNNの動的進化にネイティブにマッピングできる時間次元がある。
第二に、小規模SNNは技術通信規格で要求される目標精度を達成できる。
第三に、小さなスケールと定義された目標精度のため、このタスクはエネルギー効率、リソース要求、システムの複雑さといった現実世界の側面の最適化を容易にする。
関連論文リスト
- TESS: A Scalable Temporally and Spatially Local Learning Rule for Spiking Neural Networks [6.805933498669221]
リソース制約のあるデバイス上でのニューラルネットワーク(SNN)のトレーニングは、高い計算とメモリ要求のため、依然として困難である。
本稿では,SNNの学習のための時間的・空間的学習ルールであるTESSを紹介する。
本手法は,各ニューロン内の局所的な信号にのみ依存することにより,時間的および空間的クレジット割り当てに対処する。
論文 参考訳(メタデータ) (2025-02-03T21:23:15Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率で知られている。
本研究では,SNNアーキテクチャにおける新しい計算手法と情報符号化方式の融合について検討する。
提案手法のトレードオフを,精度,推論遅延,スパイク空間性,エネルギー消費,データセットの観点から検討する。
論文 参考訳(メタデータ) (2024-04-26T22:52:23Z) - TIM: An Efficient Temporal Interaction Module for Spiking Transformer [5.74337858210191]
スパイキングニューラルネットワーク(SNN)はその生物学的妥当性と計算効率で有名になった。
ニューラルネットワークアーキテクチャの進歩にインスパイアされた注意機構の統合は、スパイキングトランスフォーマーの開発につながった。
これらは、SNNの機能強化、特に静的データセットとニューロモルフィックデータセットの両方の領域において、有望であることを示している。
本稿では,SNNアーキテクチャにおける時間的データ処理能力を高めるために,TIM(Temporal Interaction Module)を導入した。
論文 参考訳(メタデータ) (2024-01-22T04:54:42Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - FSpiNN: An Optimization Framework for Memory- and Energy-Efficient
Spiking Neural Networks [14.916996986290902]
スパイキングニューラルネットワーク(SNN)は、スパイクタイピング依存の可塑性(STDP)ルールのために教師なし学習機能を提供する。
しかし、最先端のSNNは高い精度を達成するために大きなメモリフットプリントを必要とする。
トレーニングおよび推論処理のためのメモリ効率とエネルギー効率のよいSNNを得るための最適化フレームワークFSpiNNを提案する。
論文 参考訳(メタデータ) (2020-07-17T09:40:26Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。