論文の概要: Activation-wise Propagation: A Universal Strategy to Break Timestep Constraints in Spiking Neural Networks for 3D Data Processing
- arxiv url: http://arxiv.org/abs/2502.12791v2
- Date: Mon, 21 Apr 2025 05:17:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 17:11:52.676418
- Title: Activation-wise Propagation: A Universal Strategy to Break Timestep Constraints in Spiking Neural Networks for 3D Data Processing
- Title(参考訳): アクティベーション・ワイド・プロパゲーション:3次元データ処理のためのスパイクニューラルネットワークにおける時間制約を破るユニバーサル戦略
- Authors: Jian Song, Xiangfei Yang, Donglin Wang,
- Abstract要約: スパイキングニューロンに対する新しい状態更新機構であるAMP2(Activation-wise membrane potential Propagation)を導入する。
深いネットワークで接続をスキップすることで刺激を受け、AMP2はニューロンの膜電位をネットワークに組み込み、反復的な更新を不要にする。
提案手法は,3次元点雲やイベントストリームなど,様々な3次元モードの大幅な改善を実現する。
- 参考スコア(独自算出の注目度): 29.279985043923386
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Due to their event-driven and parameter-efficient effect, spiking neural networks (SNNs) show potential in tasks requiring real-time multi-sensor perception, such as autonomous driving. The spiking mechanism facilitates sparse encoding, enabling spatial and temporal data to be represented in a discrete manner. However, SNNs still lag behind artificial neural networks (ANNs) in terms of performance and computational efficiency. One major challenge in SNNs is the timestep-wise iterative update of neuronal states, which makes it difficult to achieve an optimal trade-off among accuracy, latency, and training cost. Although some methods perform well with shorter timesteps, few propose strategies to overcome such constraint effectively. Moreover, many recent SNN advancements rely on either optimizations tailored to specific architectures or a collection of specialized neuron-level strategies. While these approaches can enhance performance, they often lead to increased computational expense and restrict their application to particular architectures or modalities. This leaves room for further exploration of simple, universal, and structure-agnostic strategies that could offer broader applicability and efficiency. In this paper, we introduce Activation-wise Membrane Potential Propagation (AMP2), a novel state update mechanism for spiking neurons. Inspired by skip connections in deep networks, AMP2 incorporates the membrane potential of neurons into network, eliminating the need for iterative updates. Our method achieves significant improvements across various 3D modalities, including 3D point clouds and event streams, boosting Spiking PointNet's accuracy on ModelNet40 from 87.36% to 89.74% and surpassing ANN PointNet in recognition accuracy on the DVS128 Gesture dataset.
- Abstract(参考訳): 事象駆動とパラメータ効率の影響により、スパイクニューラルネットワーク(SNN)は、自律運転のようなリアルタイムのマルチセンサー認識を必要とするタスクにおいてポテンシャルを示す。
スパイキング機構はスパース符号化を容易にし、空間的および時間的データを離散的に表現できるようにする。
しかしながら、SNNは、パフォーマンスと計算効率の点で、人工知能(ANN)に遅れを取っている。
SNNにおける大きな課題のひとつは、時間的に反復的な神経状態の更新であり、正確性、レイテンシ、トレーニングコストのトレードオフを最適に達成することは困難である。
いくつかの手法は短い時間ステップでうまく機能するが、そのような制約を効果的に克服するための戦略を提案するものはほとんどない。
さらに、最近のSNNの進歩の多くは、特定のアーキテクチャに適した最適化や、特別なニューロンレベルの戦略の収集に依存している。
これらのアプローチは性能を高めることができるが、しばしば計算コストが増大し、特定のアーキテクチャやモダリティに制限される。
このことは、より広範な適用性と効率を提供する、単純で普遍的で構造に依存しない戦略をさらに探求する余地を残している。
本稿では,ニューロンをスパイクする新しい状態更新機構であるAMP2(Activation-wise membrane potential Propagation)を紹介する。
深いネットワークで接続をスキップすることで刺激を受け、AMP2はニューロンの膜電位をネットワークに組み込み、反復的な更新を不要にする。
DVS128 Gestureデータセットの認識精度では,ModelNet40のSpike PointNetの精度が87.36%から89.74%に向上し,ANN PointNetを上回った。
関連論文リスト
- Spiking Neural Networks for Temporal Processing: Status Quo and Future Prospects [41.8742357294068]
スパイキングニューラルネットワーク(SNN)は、その豊富な神経力学とスパース活動パターンのために、データを高い効率で処理する上で優れている。
近年のSNNの発展に伴い,その時間的処理能力を総合的に評価する必要性が高まっている。
論文 参考訳(メタデータ) (2025-02-13T16:17:57Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - Canonic Signed Spike Coding for Efficient Spiking Neural Networks [7.524721345903027]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンのスパイキング行動を模倣し、ニューラルコンピューティングと人工知能の進歩において重要な役割を果たすと期待されている。
ANN(Artificial Neural Networks)からSNN(SNN)への変換は最も広く使われているトレーニング手法であり、その結果のSNNが大規模データセット上でANNと同等に動作することを保証する。
現在のスキームは、通常、スパイクカウントまたはタイピングのタイミングを使用しており、これはANNのアクティベーションと線形に関連しており、必要な時間ステップの数を増やす。
我々は新しいCanononic Signed Spike (CSS) 符号化を提案する。
論文 参考訳(メタデータ) (2024-08-30T12:39:25Z) - Learning Delays Through Gradients and Structure: Emergence of Spatiotemporal Patterns in Spiking Neural Networks [0.06752396542927405]
学習可能なシナプス遅延を2つのアプローチで組み込んだスパイキングニューラルネットワーク(SNN)モデルを提案する。
後者のアプローチでは、ネットワークは接続を選択してプーンし、スパース接続設定の遅延を最適化する。
本研究では,時間的データ処理のための効率的なSNNモデルを構築するために,遅延学習と動的プルーニングを組み合わせる可能性を示す。
論文 参考訳(メタデータ) (2024-07-07T11:55:48Z) - ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks [1.5931140598271163]
局所的な常時オンおよび位相自由可塑性のみを用いて,効率的な学習シーケンスのモデルを構築した。
鳥の鳴き声学習のモックアップでELiSeの能力を実証し、パラメトリゼーションに関してその柔軟性を実証する。
論文 参考訳(メタデータ) (2024-02-26T17:30:34Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
スパイキングニューラルネットワーク(SNN)は、時間データの複雑さを捉えるためのユニークな経路を提供する。
SNNを時系列予測に適用することは、効果的な時間的アライメントの難しさ、符号化プロセスの複雑さ、およびモデル選択のための標準化されたガイドラインの欠如により困難である。
本稿では,時間情報処理におけるスパイクニューロンの効率を活かした時系列予測タスクにおけるSNNのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:23:50Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
この研究は、量子化されたニューラルネットワークの最近の進歩とスパイクニューラルネットワークのギャップを埋めることを目的としている。
これは、シグモイド関数の線形結合として表される量子化関数の性能に関する広範な研究を示す。
提案した量子化関数は、4つの人気のあるベンチマーク上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-05-30T09:42:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks [19.490903216456758]
スパイキングニューラルネットワーク(SNN)は、非同期離散性とスパース特性を持つニューラルネットワークである。
既存のスパイキング抑制残差ネットワーク(Spiking DS-ResNet)に基づくマルチレベル焼成(MLF)手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T16:39:46Z) - Spiking Neural Networks for event-based action recognition: A new task to understand their advantage [1.4348901037145936]
スパイキングニューラルネットワーク(SNN)は、そのユニークな時間的ダイナミクスによって特徴づけられる。
フィードフォワードニューラルネットワークにおいて、スパイキングニューロンが時間的特徴抽出を可能にする方法を示す。
また、繰り返しSNNがLSTMに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-29T16:22:46Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
ニューラルインスパイアされたイベント駆動処理でニューラルネットワーク(SNN)をスパイクすることで、非同期データを効率的に処理できる。
スパイク消滅問題を緩和するために,学習可能な神経力学を用いた適応型完全スパイキングフレームワークを提案する。
実験の結果,平均終端誤差(AEE)は最先端のANNと比較して平均13%減少した。
論文 参考訳(メタデータ) (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Learn to cycle: Time-consistent feature discovery for action recognition [83.43682368129072]
時間的変動を一般化することは、ビデオにおける効果的な行動認識の前提条件である。
Squeeze Re Temporal Gates (SRTG) を導入する。
SRTPGブロックを使用する場合,GFLOの数は最小限に抑えられ,一貫した改善が見られた。
論文 参考訳(メタデータ) (2020-06-15T09:36:28Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。