論文の概要: Automatic detection of diseases in Spanish clinical notes combining medical language models and ontologies
- arxiv url: http://arxiv.org/abs/2412.03176v1
- Date: Wed, 04 Dec 2024 09:57:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:57.538275
- Title: Automatic detection of diseases in Spanish clinical notes combining medical language models and ontologies
- Title(参考訳): 医療言語モデルとオントロジーを組み合わせたスペイン語臨床ノートにおける疾患の自動検出
- Authors: Leon-Paul Schaub Torre, Pelayo Quiros, Helena Garcia Mieres,
- Abstract要約: 医療用語と組み合わせた大きなモデルを用いて、最初の予約またはフォローアップ医療報告から、人が苦しむ可能性のある病理を予測します。
その結果,病理のタイプ,重症度,位置をモデルに教えるとともに,これらの3つの特徴をどの順番で学ばなければならないかが,精度を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we present a hybrid method for the automatic detection of dermatological pathologies in medical reports. We use a large language model combined with medical ontologies to predict, given a first appointment or follow-up medical report, the pathology a person may suffer from. The results show that teaching the model to learn the type, severity and location on the body of a dermatological pathology, as well as in which order it has to learn these three features, significantly increases its accuracy. The article presents the demonstration of state-of-the-art results for classification of medical texts with a precision of 0.84, micro and macro F1-score of 0.82 and 0.75, and makes both the method and the data set used available to the community.
- Abstract(参考訳): 本稿では,医療報告における皮膚疾患の自動検出のためのハイブリッド手法を提案する。
医療オントロジーと組み合わさった大きな言語モデルを用いて、最初の予約またはフォローアップ医療報告を考慮すれば、その人が苦しむ可能性のある病理を予測できる。
その結果, 皮膚病理のタイプ, 重症度, 位置をモデルに教えるとともに, これらの3つの特徴をどの順番で学ばなければならないかが, 精度を著しく向上させることがわかった。
本論文は,医療用テキストの分類における最先端の成果を精度0.84,マイクロF1スコア0.82,マクロF1スコア0.75で示すものである。
関連論文リスト
- Detección Automática de Patologías en Notas Clínicas en Español Combinando Modelos de Lenguaje y Ontologías Médicos [0.0]
当科では,患者が皮膚病理疾患を患う場合,第1の予約又はフォローアップ医療報告を予測するために,医療と組み合わせた大きな言語を用いている。
その結果, モデルに体型, 重症度, 位置を学習させることで, 精度が有意に向上することが示唆された。
本論文では,医療用テキストの精度0.84,マイクロF1スコア0.82,マクロF1スコア0.75の分類における最先端結果の実証について述べる。
論文 参考訳(メタデータ) (2024-10-01T12:03:04Z) - Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation [1.922611370494431]
本研究は,ポルトガル語における医療エージェントとしての大規模言語モデル(LLM)の性能を評価する。
InternLM2モデルは、当初医療データに関するトレーニングを受けており、全体的なパフォーマンスが最高であった。
ChatBodeから派生したDrBodeモデルは、取得した医療知識を壊滅的に忘れる現象を示した。
論文 参考訳(メタデータ) (2024-09-30T19:10:03Z) - RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
本稿では,Radiological Report (Text) Evaluation (RaTEScore) として,新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
論文 参考訳(メタデータ) (2024-06-24T17:49:28Z) - Assertion Detection Large Language Model In-context Learning LoRA
Fine-tuning [2.401755243180179]
本稿では,大規模言語モデル(LLM)を多数の医療データに基づいて事前学習してアサーション検出を行う手法を提案する。
提案手法は従来の手法よりも0.31高い0.74のF-1を達成した。
論文 参考訳(メタデータ) (2024-01-31T05:11:00Z) - Large Language Models with Retrieval-Augmented Generation for Zero-Shot
Disease Phenotyping [1.8630636381951384]
大規模言語モデル(LLM)はテキスト理解の約束を提供するが、実際の臨床文書を効率的に扱うことはできない。
検索拡張生成とMapReduceにより強化されたゼロショットLLM法を提案する。
肺動脈圧の上昇を特徴とする稀な疾患である肺高血圧症(PH)に対して本法を適用した。
論文 参考訳(メタデータ) (2023-12-11T15:45:27Z) - CORAL: Expert-Curated medical Oncology Reports to Advance Language Model
Inference [2.1067045507411195]
大規模言語モデル(LLM)は、最近、様々な医学自然言語処理タスクにおいて印象的なパフォーマンスを示した。
そこで我々は, 患者の特徴, 腫瘍の特徴, 検査, 治療, 時間性などを含む, テキストオンコロジー情報に注釈を付けるための詳細なスキーマを開発した。
GPT-4モデルでは、BLEUスコアが平均0.73、ROUGEスコアが平均0.72、F1スコアが0.51、複雑なタスクが平均68%であった。
論文 参考訳(メタデータ) (2023-08-07T18:03:10Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。