Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for Traffic Prediction
- URL: http://arxiv.org/abs/2412.03188v1
- Date: Wed, 04 Dec 2024 10:20:21 GMT
- Title: Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for Traffic Prediction
- Authors: Ivan Kralj, Lodovico Giaretta, Gordan Ježić, Ivana Podnar Žarko, Šarūnas Girdzijauskas,
- Abstract summary: We explore and adapt semi-decentralized training techniques for Spatiotemporal Graph-Temporal Neural Networks (ST-GNNs) in smart mobility domain.
We implement a simulation framework where sensors are grouped by proximity into multiple cloudlets.
We show that semi-decentralized setups are comparable to centralized approaches in performance metrics.
- Score: 0.15978270011184256
- License:
- Abstract: In smart mobility, large networks of geographically distributed sensors produce vast amounts of high-frequency spatio-temporal data that must be processed in real time to avoid major disruptions. Traditional centralized approaches are increasingly unsuitable to this task, as they struggle to scale with expanding sensor networks, and reliability issues in central components can easily affect the whole deployment. To address these challenges, we explore and adapt semi-decentralized training techniques for Spatio-Temporal Graph Neural Networks (ST-GNNs) in smart mobility domain. We implement a simulation framework where sensors are grouped by proximity into multiple cloudlets, each handling a subgraph of the traffic graph, fetching node features from other cloudlets to train its own local ST-GNN model, and exchanging model updates with other cloudlets to ensure consistency, enhancing scalability and removing reliance on a centralized aggregator. We perform extensive comparative evaluation of four different ST-GNN training setups -- centralized, traditional FL, server-free FL, and Gossip Learning -- on large-scale traffic datasets, the METR-LA and PeMS-BAY datasets, for short-, mid-, and long-term vehicle speed predictions. Experimental results show that semi-decentralized setups are comparable to centralized approaches in performance metrics, while offering advantages in terms of scalability and fault tolerance. In addition, we highlight often overlooked issues in existing literature for distributed ST-GNNs, such as the variation in model performance across different geographical areas due to region-specific traffic patterns, and the significant communication overhead and computational costs that arise from the large receptive field of GNNs, leading to substantial data transfers and increased computation of partial embeddings.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
We develop a pipeline that utilizes a diffusion model to generate extensive training data.
We are the first to generate images conditioned on a location dot map with a diffusion model.
Our proposed counting loss for the diffusion model effectively minimizes the discrepancies between the location dot map and the crowd images generated.
arXiv Detail & Related papers (2024-01-25T07:28:22Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - FLARE: Detection and Mitigation of Concept Drift for Federated Learning
based IoT Deployments [2.7776688429637466]
FLARE is a lightweight dual-scheduler FL framework that conditionally transfers training data and deploys models between edge and sensor endpoints.
We show that FLARE can significantly reduce the amount of data exchanged between edge and sensor nodes compared to fixed-interval scheduling methods.
It can successfully detect concept drift reactively with at least a 16x reduction in latency.
arXiv Detail & Related papers (2023-05-15T10:09:07Z) - Semi-decentralized Inference in Heterogeneous Graph Neural Networks for
Traffic Demand Forecasting: An Edge-Computing Approach [35.0857568908058]
graph neural networks (GNNs) have been shown promising for prediction of taxi service demand and supply.
We propose a semi-decentralized approach utilizing multiple cloudlets, moderately sized storage and computation devices.
Also, we propose a heterogeneous GNN-LSTM algorithm for improved taxi-level demand and supply forecasting.
arXiv Detail & Related papers (2023-02-28T00:21:18Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network [39.65520262751766]
We develop a new traffic prediction framework-Spatial-Temporal Graph Diffusion Network (ST-GDN)
In particular, ST-GDN is a hierarchically structured graph neural architecture which learns not only the local region-wise geographical dependencies, but also the spatial semantics from a global perspective.
Experiments on several real-life traffic datasets demonstrate that ST-GDN outperforms different types of state-of-the-art baselines.
arXiv Detail & Related papers (2021-10-08T11:19:06Z) - Cross-Node Federated Graph Neural Network for Spatio-Temporal Data
Modeling [13.426382746638007]
We propose a graph neural network (GNN)-based architecture under the constraint of cross-node federated learning.
CNFGNN operates by disentangling the temporal computation on devices and spatial dynamics on the server.
Experiments show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings.
arXiv Detail & Related papers (2021-06-09T17:12:43Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
We propose a novel framework using graph neural networks (GNNs) to learn decentralized controllers.
GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties.
The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
arXiv Detail & Related papers (2020-12-29T18:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.