Integrated InP-based transmitter for Continuous-Variable Quantum Key Distribution
- URL: http://arxiv.org/abs/2412.03208v1
- Date: Wed, 04 Dec 2024 10:46:41 GMT
- Title: Integrated InP-based transmitter for Continuous-Variable Quantum Key Distribution
- Authors: Jennifer Aldama, Samael Sarmiento, Luis Trigo Vidarte, Sebastian Etcheverry, Ignacio López Grande, Lorenzo Castelvero, Alberto Hinojosa, Tobias Beckerwerth, Yoann Piétri, Amine Rhouni, Eleni Diamanti, Valerio Pruneri,
- Abstract summary: In this work, we design, fabricate and characterize an InP-based PIC transmitter for continuous-variable (CV) QKD applications.
Results show the potential of InP technologies to integrate CV-QKD systems onto a monolithic platform.
- Score: 0.0
- License:
- Abstract: Developing quantum key distribution (QKD) systems using monolithic photonic integrated circuits (PICs) can accelerate their adoption by a wide range of markets, thanks to the potential reduction in size, complexity of the overall system, power consumption, and production cost. In this work, we design, fabricate and characterize an InP-based PIC transmitter for continuous-variable (CV) QKD applications. In a proof-of-principle experiment implementing a pulsed Gaussian-modulated coherent state (GMCS) CV-QKD protocol over an optical fiber channel of 11 km, the system showed a performance compatible with a secret key rate of 78 kbps in the asymptotic regime. These results show the potential of InP technologies to integrate CV-QKD systems onto a monolithic platform.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Metropolitan quantum key distribution using a GaN-based room-temperature telecommunication single-photon source [54.32714639668751]
Single-photon sources (SPS) hold the potential to enhance the performance of quantum key distribution (QKD)
We have successfully demonstrated QKD using a room-temperature SPS at telecommunication wavelength.
arXiv Detail & Related papers (2024-09-27T07:35:51Z) - Experimental demonstration of Continuous-Variable Quantum Key
Distribution with a silicon photonics integrated receiver [0.0]
Quantum Key Distribution (QKD) is a prominent application in the field of quantum cryptography.
We present a CV-QKD receiver based on a silicon PIC capable of performing balanced detection.
arXiv Detail & Related papers (2023-11-07T13:27:47Z) - High-rate discretely-modulated continuous-variable quantum key
distribution using quantum machine learning [4.236937886028215]
We propose a high-rate scheme for discretely-modulated continuous-variable quantum key distribution (DM CVQKD) using quantum machine learning technologies.
A low-complexity quantum k-nearest neighbor (QkNN) is designed for predicting the lossy discretely-modulated coherent states (DMCSs) at Bob's side.
Numerical simulation shows that the secret key rate of our proposed scheme is explicitly superior to the existing DM CVQKD protocols.
arXiv Detail & Related papers (2023-08-07T04:00:13Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Continuous-Variable Quantum Key Distribution at 10 GBaud using an
Integrated Photonic-Electronic Receiver [0.5417521241272645]
Photonic and electronic integrated circuits that can be produced in large volumes at low cost hold the key to large-scale deployment of next-generation QKD systems.
We present a continuous-variable (CV) QKD system using an integrated photonic-electronic receiver.
The QKD system operates at a classical telecom symbol rate of 10 GBaud, generating high secret key rates exceeding 0.7 Gb/s over a distance of 5 km and 0.3 Gb/s over a distance of 10 km.
arXiv Detail & Related papers (2023-05-31T08:17:09Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Resource-efficient quantum key distribution with integrated silicon
photonics [9.319767987871627]
Integrated photonics provides a promising platform for quantum key distribution (QKD) system in terms of miniaturization, robustness and scalability.
Here, we report a demonstration of resource-efficient chip-based BB84 QKD with a silicon-based encoder and decoder.
arXiv Detail & Related papers (2022-12-26T01:45:13Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Enhancing discrete-modulated continuous-variable
measurement-device-independent quantum key distribution via quantum catalysis [2.385953310482485]
discrete modulation can make up for the shortage of transmission distance in measurement device continuous-variable key distribution.
We suggest a quantum (QC) approach for enhancing the performance of the discrete-modulated (DM) MDI-CVQKD.
arXiv Detail & Related papers (2020-04-22T07:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.