論文の概要: Linq-Embed-Mistral Technical Report
- arxiv url: http://arxiv.org/abs/2412.03223v1
- Date: Wed, 04 Dec 2024 11:18:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:56.320172
- Title: Linq-Embed-Mistral Technical Report
- Title(参考訳): Linq-Embed-Mistral Technical Report
- Authors: Chanyeol Choi, Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, Jy-yong Sohn,
- Abstract要約: MTEBベンチマークにおけるLinq-Embed-Mistralの抜粋(2024年5月29日現在)
Linq-Embed-MistralはMTEBのリーダーボード上での検索タスクのスコアは60.2である。
- 参考スコア(独自算出の注目度): 11.77727725268191
- License:
- Abstract: This report explores the enhancement of text retrieval performance using advanced data refinement techniques. We develop Linq-Embed-Mistral\footnote{\url{https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral}} by building on the E5-mistral and Mistral-7B-v0.1 models, focusing on sophisticated data crafting, data filtering, and negative mining methods, which are highly tailored to each task, applied to both existing benchmark dataset and highly tailored synthetic dataset generated via large language models (LLMs). Linq-Embed-Mistral excels in the MTEB benchmarks (as of May 29, 2024), achieving an average score of 68.2 across 56 datasets, and ranks 1st among all models for retrieval tasks on the MTEB leaderboard with a performance score of 60.2. This performance underscores its superior capability in enhancing search precision and reliability. Our contributions include advanced data refinement methods that significantly improve model performance on benchmark and synthetic datasets, techniques for homogeneous task ordering and mixed task fine-tuning to enhance model generalization and stability, and a streamlined evaluation process using 4-bit precision and a light retrieval evaluation set, which accelerates validation without sacrificing accuracy.
- Abstract(参考訳): 本稿では,高度なデータ改質技術を用いたテキスト検索性能の向上について検討する。
我々は、E5-mistralモデルとMistral-7B-v0.1モデルに基づいてLinq-Embed-Mistral\footnote{\url{https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral}}を開発し、各タスクに高度に調整された高度なデータ作成、データフィルタリング、負のマイニング手法に焦点を当て、既存のベンチマークデータセットと、大規模言語モデル(LLM)によって生成された高度に調整された合成データセットの両方に適用する。
Linq-Embed-MistralはMTEBベンチマーク(2024年5月29日現在)を抜粋し、56のデータセットで平均68.2のスコアを獲得し、MTEBリーダーボード上での検索タスクでは60.2のスコアで1位にランクインしている。
この性能は、検索精度と信頼性を向上させる優れた能力を示している。
提案手法には, ベンチマークおよび合成データセットにおけるモデル性能を著しく向上させる高度なデータ改善手法, モデルの一般化と安定性を向上する均質なタスクオーダーおよび混合タスク微調整技術, 4ビット精度と光評価評価セットを用いて, 精度を犠牲にすることなく検証を高速化する合理化評価プロセスが含まれる。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Crafting Efficient Fine-Tuning Strategies for Large Language Models [2.633490094119608]
200サンプル未満の細調整された大型言語モデル(LLM)は、製品属性抽出タスクにおいて、モデル精度を70%から88%に向上させることができる。
トレーニング時間全体の20%のモデルを評価するベイズハイパーパラメータ最適化法は,最終的なモデル性能と強く相関する。
このアプローチにより、独立したテストセットで評価すると、ベースラインモデルよりも精度が2%向上した。
論文 参考訳(メタデータ) (2024-07-18T21:36:00Z) - NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models [38.41524186248607]
NV-Embedモデルに様々なアーキテクチャ設計とトレーニング手順を導入する。
我々のモデルは、MTEB(Massive Text Embedding Benchmark)で1位、69.32の最高スコアを記録した。
私たちはこのモデルを、https://face.co/EIR/NV-Embed-v1.comでオープンソース化しました。
論文 参考訳(メタデータ) (2024-05-27T17:59:45Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
研究者や実践者は、しばしば異なるソースからデータセットを手動でキュレートする必要がある。
本稿では,処理モジュールと解析モジュールを統合したデータ処理フレームワークを提案する。
提案されたフレームワークは使いやすく、柔軟です。
論文 参考訳(メタデータ) (2024-02-26T07:22:51Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGENは、高品質な合成データセットを生成するための、多段階のプロンプト戦略である。
我々は,LLMが不正確なラベル付きインスタンスを修正できるようにする自己補正法により,TarGENを増強する。
合成データセットを元のデータセットと比較した包括的な分析により、データセットの複雑さと多様性の類似または高いレベルが明らかになる。
論文 参考訳(メタデータ) (2023-10-27T03:32:17Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z) - Instruction Mining: Instruction Data Selection for Tuning Large Language Models [18.378654454336136]
InstructMiningは、大規模な言語モデルを微調整するためのプレミアムインストラクションフォローデータを自動的に選択するように設計されている。
InstructMining は LLM-as-a-judge と Huggingface OpenLLM の2つのベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-07-12T16:37:31Z) - Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and
the Case of Information Extraction [28.51694365908817]
本研究は,大規模言語モデルでは直接解けないタスクに対しても,有用なデータを合成的に生成できることを示唆する。
我々は、1.8Mのデータポイントのデータセットを合成的に生成し、人間の評価において既存のデータセットと比較して優れた品質を確立する。
論文 参考訳(メタデータ) (2023-03-07T18:48:55Z) - GEMv2: Multilingual NLG Benchmarking in a Single Line of Code [161.1761414080574]
Generation, Evaluation, and Metrics Benchmarkは、データセット、モデル、メトリック開発者のためのモジュラーインフラストラクチャを提供する。
GEMv2は51言語で40のドキュメントデータセットをサポートする。
すべてのデータセットのモデルはオンラインで評価でき、インタラクティブなデータカード作成とレンダリングツールによって、生きたベンチマークに新しいデータセットを簡単に追加できます。
論文 参考訳(メタデータ) (2022-06-22T17:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。