論文の概要: Detecting abnormal heart sound using mobile phones and on-device IConNet
- arxiv url: http://arxiv.org/abs/2412.03267v1
- Date: Wed, 04 Dec 2024 12:18:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:51.791641
- Title: Detecting abnormal heart sound using mobile phones and on-device IConNet
- Title(参考訳): 携帯電話とオンデバイスIConNetを用いた異常心臓音の検出
- Authors: Linh Vu, Thu Tran,
- Abstract要約: 本稿では、携帯電話とオンデバイス推論に最適化された軽量ニューラルネットワークを利用して、異常な心臓音検出のためのユーザフレンドリーなソリューションを提案する。
解釈可能な畳み込みニューラルネットワークであるIConNetは、音声信号処理からの洞察を活用し、効率を向上し、生波形信号からニューラルネットワークを抽出する透明性を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Given the global prevalence of cardiovascular diseases, there is a pressing need for easily accessible early screening methods. Typically, this requires medical practitioners to investigate heart auscultations for irregular sounds, followed by echocardiography and electrocardiography tests. To democratize early diagnosis, we present a user-friendly solution for abnormal heart sound detection, utilizing mobile phones and a lightweight neural network optimized for on-device inference. Unlike previous approaches reliant on specialized stethoscopes, our method directly analyzes audio recordings, facilitated by a novel architecture known as IConNet. IConNet, an Interpretable Convolutional Neural Network, harnesses insights from audio signal processing, enhancing efficiency and providing transparency in neural pattern extraction from raw waveform signals. This is a significant step towards trustworthy AI in healthcare, aiding in remote health monitoring efforts.
- Abstract(参考訳): 心臓血管疾患の世界的な流行を考えると、早期検診法は必要不可欠である。
通常、これは医療従事者が不規則な音に対する心臓の聴力を調べることを必要とし、次いで心エコー検査と心電図検査が続く。
早期診断を民主化するために,携帯電話とオンデバイス推論に最適化された軽量ニューラルネットワークを利用して,異常な心臓音の検出を行うユーザフレンドリーなソリューションを提案する。
従来は特殊な聴診器に頼っていた手法とは違い,本手法はIConNetと呼ばれる新しいアーキテクチャによって実現された音声記録を直接解析する。
解釈可能な畳み込みニューラルネットワークであるIConNetは、音声信号処理からの洞察を活用し、効率を向上し、生波形信号からニューラルネットワークを抽出する透明性を提供する。
これは、医療における信頼できるAIへの重要なステップであり、リモートヘルスモニタリングの取り組みを支援している。
関連論文リスト
- ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
単誘導心電図データに基づいて心房細動を識別するための視覚変換器アプローチを開発した。
また、残差ネットワーク(ResNet)アプローチも、視覚変換器アプローチと比較するために開発されている。
論文 参考訳(メタデータ) (2024-02-12T11:04:08Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
臨床環境でのオーディオ・ビジュアル・モデリングを考察し、人間の専門的アノテーションを使わずに医学的表現を学習するためのソリューションを提供する。
この目的のために, 単純かつ効果的なマルチモーダル自己教師型学習フレームワークを提案する。
提案手法は,音声のみを基準として,超音波画像中の解剖学的関心領域をローカライズすることができる。
論文 参考訳(メタデータ) (2023-10-25T08:55:48Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
近年、従来の医療システムを変革する試みとして、デジタル医療の研究が急速に増加している。
コンピュータによるオーディションは、少なくとも商業的関心の面では遅れている。
実生活における聴覚信号の分析に必要な基礎技術に対応する聴覚、計算とデータ効率の進歩、個々の差異を考慮し、医療データの長手性を扱う聴覚。
論文 参考訳(メタデータ) (2023-01-25T09:25:08Z) - Heart Abnormality Detection from Heart Sound Signals using MFCC Feature
and Dual Stream Attention Based Network [0.0]
そこで,本研究では,患者の心臓状態の異常を検出するために,生の心臓音信号とMFCC特徴の両方を用いて,注意機構を備えた新しい深層学習型デュアルストリームネットワークを提案する。
このモデルは、利用可能なPCG信号の最大のデータセットに基づいて訓練されており、精度87.11、感度872.41、特異度91.8、MACC87.12を達成している。
論文 参考訳(メタデータ) (2022-11-17T18:20:46Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
本稿では,意図に基づく畳み込みニューラルネットワーク(ABCNN)を用いて生の心電図信号に対処し,正確な不整脈検出のための情報的依存関係を自動的に抽出する手法を提案する。
我々の主な課題は、正常な心拍から不整脈を見つけ、その間に5種類の不整脈から心疾患を正確に認識することである。
実験の結果,提案するABCNNは広く使用されているベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-08-18T14:55:46Z) - Project Achoo: A Practical Model and Application for COVID-19 Detection
from Recordings of Breath, Voice, and Cough [55.45063681652457]
コンシューマー端末で録音した音声を用いて、新型コロナウイルスを迅速にトリアージする機械学習手法を提案する。
この手法は,信号処理手法と微調整深層学習ネットワークを組み合わせることで,信号の識別,コークス検出,分類を行う手法を提供する。
我々はまた、症状チェッカーと音声、息、うず信号を使って新型コロナウイルスの感染を検知するモバイルアプリケーションを開発し、展開した。
論文 参考訳(メタデータ) (2021-07-12T08:07:56Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
異常検出のための心臓音の自動解析は、加算雑音とセンサ依存劣化の課題に直面している。
本研究の目的は, 心音に両種類の歪みが存在する場合に, 心的異常検出問題に対処する手法を開発することである。
提案手法は, 安価な聴診器を用いて, ノイズの多い環境下で, コンピュータ支援型心臓聴診システムを開発するための道を開くものである。
論文 参考訳(メタデータ) (2021-06-03T14:09:04Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
本稿では,ホルター記録を雑音に頑健に解析する3段階プロセスを提案する。
第1段階は、心拍位置を検出する勾配デコーダアーキテクチャを備えたセグメンテーションニューラルネットワーク(NN)である。
第2段階は、心拍を幅または幅に分類する分類NNである。
第3のステージは、NN機能の上に、患者対応機能を組み込んだ強化決定木(GBDT)である。
論文 参考訳(メタデータ) (2020-11-17T16:15:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。