Subject-specific Deep Neural Networks for Count Data with
High-cardinality Categorical Features
- URL: http://arxiv.org/abs/2310.11654v1
- Date: Wed, 18 Oct 2023 01:54:48 GMT
- Title: Subject-specific Deep Neural Networks for Count Data with
High-cardinality Categorical Features
- Authors: Hangbin Lee, Il Do Ha, Changha Hwang, Youngjo Lee
- Abstract summary: We propose a novel hierarchical likelihood learning framework for introducing gamma random effects into a Poisson deep neural network.
The proposed method simultaneously yields maximum likelihood estimators for fixed parameters and best unbiased predictors for random effects.
State-of-the-art network architectures can be easily implemented into the proposed h-likelihood framework.
- Score: 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a growing interest in subject-specific predictions using deep neural
networks (DNNs) because real-world data often exhibit correlations, which has
been typically overlooked in traditional DNN frameworks. In this paper, we
propose a novel hierarchical likelihood learning framework for introducing
gamma random effects into the Poisson DNN, so as to improve the prediction
performance by capturing both nonlinear effects of input variables and
subject-specific cluster effects. The proposed method simultaneously yields
maximum likelihood estimators for fixed parameters and best unbiased predictors
for random effects by optimizing a single objective function. This approach
enables a fast end-to-end algorithm for handling clustered count data, which
often involve high-cardinality categorical features. Furthermore,
state-of-the-art network architectures can be easily implemented into the
proposed h-likelihood framework. As an example, we introduce multi-head
attention layer and a sparsemax function, which allows feature selection in
high-dimensional settings. To enhance practical performance and learning
efficiency, we present an adjustment procedure for prediction of random
parameters and a method-of-moments estimator for pretraining of variance
component. Various experiential studies and real data analyses confirm the
advantages of our proposed methods.
Related papers
- Implicit Generative Prior for Bayesian Neural Networks [8.013264410621357]
We propose a novel neural adaptive empirical Bayes (NA-EB) framework for complex data structures.
The proposed NA-EB framework combines variational inference with a gradient ascent algorithm.
We demonstrate the practical applications of our framework through extensive evaluations on a variety of tasks.
arXiv Detail & Related papers (2024-04-27T21:00:38Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
We show that we can derive a well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training.
We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection and highly-calibrated predictive uncertainty estimates.
arXiv Detail & Related papers (2023-12-28T17:50:56Z) - Deep Neural Networks for Semiparametric Frailty Models via H-likelihood [0.0]
We propose a new deep neural network based frailty (DNN-FM) for prediction of time-to-event data.
Joint estimators of the new h-likelihood model provide maximum likelihood for fixed parameters and best unbiased predictors for random frailties.
arXiv Detail & Related papers (2023-07-13T06:46:51Z) - Sparse-Input Neural Network using Group Concave Regularization [10.103025766129006]
Simultaneous feature selection and non-linear function estimation are challenging in neural networks.
We propose a framework of sparse-input neural networks using group concave regularization for feature selection in both low-dimensional and high-dimensional settings.
arXiv Detail & Related papers (2023-07-01T13:47:09Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
Neural Networks for Traffic Forecasting [2.088376060651494]
We focus on a diffusion convolutional recurrent neural network (DCRNN), a state-of-the-art method for short-term traffic forecasting.
We develop a scalable deep ensemble approach to quantify uncertainties for DCRNN.
We show that our generic and scalable approach outperforms the current state-of-the-art Bayesian and a number of other commonly used frequentist techniques.
arXiv Detail & Related papers (2022-04-04T16:10:55Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.