論文の概要: Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
- arxiv url: http://arxiv.org/abs/2412.03318v3
- Date: Sun, 01 Jun 2025 00:17:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 16:22:42.905859
- Title: Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
- Title(参考訳): 物理制約付き合成データを用いた領域非依存ストローク病変分割
- Authors: Liam Chalcroft, Jenny Crinion, Cathy J. Price, John Ashburner,
- Abstract要約: 合成定量的MRI(qMRI)画像を生成するための物理制約付きアプローチを2つ導入する。
私たちの最初のメソッドである$textttqATLAS$は、標準的なMPRAGE画像からqMRIマップを推定するためにニューラルネットワークを訓練する。
2番目のメソッドである$textttq Synth$は、組織ラベルから直接qMRIマップを合成する。
- 参考スコア(独自算出の注目度): 0.15749416770494706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting stroke lesions in MRI is challenging due to diverse acquisition protocols that limit model generalisability. In this work, we introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images that improve segmentation robustness across heterogeneous domains. Our first method, $\texttt{qATLAS}$, trains a neural network to estimate qMRI maps from standard MPRAGE images, enabling the simulation of varied MRI sequences with realistic tissue contrasts. The second method, $\texttt{qSynth}$, synthesises qMRI maps directly from tissue labels using label-conditioned Gaussian mixture models, ensuring physical plausibility. Extensive experiments on multiple out-of-domain datasets show that both methods outperform a baseline UNet, with $\texttt{qSynth}$ notably surpassing previous synthetic data approaches. These results highlight the promise of integrating MRI physics into synthetic data generation for robust, generalisable stroke lesion segmentation. Code is available at https://github.com/liamchalcroft/qsynth
- Abstract(参考訳): MRIにおける脳梗塞のセグメンテーションは、モデル一般可能性を制限する多様な取得プロトコルにより困難である。
本研究では,一様領域間のセグメンテーションロバスト性を改善する合成定量的MRI(qMRI)画像を生成するための物理制約付き2つのアプローチを提案する。
最初の方法は$\texttt{qATLAS}$で、標準的なMPRAGE画像からqMRIマップを推定するためにニューラルネットワークを訓練し、現実的な組織コントラストによる様々なMRIシーケンスのシミュレーションを可能にします。
2つ目の方法である$\texttt{qSynth}$は、ラベル条件付きガウス混合モデルを用いて組織ラベルから直接qMRIマップを合成し、物理的妥当性を保証する。
複数のドメイン外のデータセットに対する大規模な実験では、どちらのメソッドもベースラインのUNetよりも優れており、$\texttt{qSynth}$は以前の合成データアプローチをはるかに上回っている。
これらの結果から,MRI物理を合成データ生成に統合し,より堅牢で汎用的な脳卒中病変の分節化を実現することが期待できる。
コードはhttps://github.com/liamchalcroft/qsynthで入手できる。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI圧縮は、複雑な時間的ダイナミクス、低信号-雑音比、複雑な基礎的冗長性のために、ユニークな課題を生んでいる。
Inlicit Neural Representation (INR)に基づくfMRIデータに適した新しい圧縮パラダイムについて報告する。
論文 参考訳(メタデータ) (2023-11-30T05:54:37Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECTは、定量的MRI(qMRI)のための統合深部展開(DU)フレームワークである
モデルベースのエンドツーエンドニューラルネットワーク、モーションアーティファクトリダクションの方法、自己教師型学習スキームで構成されている。
実験で収集したmGRE(Multi-Gradient-Recalled Echo) MRIデータから,CoRRECTは高速な取得設定で動きと不均一なアーチファクトのないR2*マップを復元することを示した。
論文 参考訳(メタデータ) (2022-10-12T15:49:51Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
本稿では,MRI合成のための深層学習に基づくマルチモーダル計算モデルを提案する。
提案手法は,各入力モダリティを,共有情報と特定の情報を持つモダリティ固有空間で分割する。
テストフェーズにおける目標モダリティの特定情報の欠如に対処するために、局所適応融合(laf)モジュールを採用してモダリティライクな擬似ターゲットを生成する。
論文 参考訳(メタデータ) (2021-05-06T17:22:22Z) - Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI
Reconstruction Models and their Generalizability to Varying Coil
Configurations [40.263770807921524]
深層学習に基づく脳磁気共鳴画像(MRI)再構成法は、MRI取得プロセスを加速する可能性がある。
マルチコイル磁気共鳴画像(MC-MRI)再構成チャレンジは、これらの問題に対処するためのベンチマークを提供する。
本稿では,この課題を実験的に考察し,脳MRI再建モデルのベースラインと状態のセットの結果を要約する。
論文 参考訳(メタデータ) (2020-11-10T04:11:48Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。