論文の概要: SGSST: Scaling Gaussian Splatting StyleTransfer
- arxiv url: http://arxiv.org/abs/2412.03371v1
- Date: Wed, 04 Dec 2024 14:59:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:38.388631
- Title: SGSST: Scaling Gaussian Splatting StyleTransfer
- Title(参考訳): SGSST: ガウス型スティングスタイルトランスファーのスケーリング
- Authors: Bruno Galerne, Jianling Wang, Lara Raad, Jean-Michel Morel,
- Abstract要約: SGSST(Scaling Gaussian Splatting Style Transfer)は、事前訓練された3DGSシーンにスタイル転送を適用する最適化ベースの方法である。
我々は、SOS for Simultanely Optimized Scalesという大域的ニューラルネットワーク統計に基づく新しいマルチスケールロスが、超高解像度3Dシーンへのスタイル転送を可能にすることを実証した。
- 参考スコア(独自算出の注目度): 10.994929376259007
- License:
- Abstract: Applying style transfer to a full 3D environment is a challenging task that has seen many developments since the advent of neural rendering. 3D Gaussian splatting (3DGS) has recently pushed further many limits of neural rendering in terms of training speed and reconstruction quality. This work introduces SGSST: Scaling Gaussian Splatting Style Transfer, an optimization-based method to apply style transfer to pretrained 3DGS scenes. We demonstrate that a new multiscale loss based on global neural statistics, that we name SOS for Simultaneously Optimized Scales, enables style transfer to ultra-high resolution 3D scenes. Not only SGSST pioneers 3D scene style transfer at such high image resolutions, it also produces superior visual quality as assessed by thorough qualitative, quantitative and perceptual comparisons.
- Abstract(参考訳): 完全な3D環境へのスタイル転送の適用は、ニューラルレンダリングの出現以来、多くの進歩を遂げてきた課題である。
3D Gaussian splatting (3DGS)は、最近、トレーニング速度と再構築品質の点で、多くのニューラルネットワークレンダリングの限界を推し進めている。
SGSST(Scaling Gaussian Splatting Style Transfer)は、事前訓練された3DGSシーンにスタイル転送を適用する最適化ベースの方法である。
我々は、SOS for Simultanely Optimized Scalesという大域的ニューラルネットワーク統計に基づく新しいマルチスケールロスが、超高解像度3Dシーンへのスタイル転送を可能にすることを実証した。
SGSSTは高解像度の3次元シーン転送の先駆者であるだけでなく、徹底的な質的、量的、知覚的な比較によって評価されるような優れた視覚的品質も生み出す。
関連論文リスト
- InstantStyleGaussian: Efficient Art Style Transfer with 3D Gaussian Splatting [1.495965529797126]
InstantStyleGaussianは3D Gaussian Splatting(3DGS)シーン表現に基づく革新的な3Dスタイルのトランスファー手法である。
ターゲットスタイルの画像を入力することで、新しい3DGSシーンを素早く生成する。
論文 参考訳(メタデータ) (2024-08-08T06:29:32Z) - SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting [44.42317312908314]
3D Gaussian Splatting (3DGS)は、3D再構成のための有望な技術であり、効率的なトレーニングとレンダリング速度を提供する。
現在の手法では、3DGSのビュー間の一貫性の仮定を満たすために、高度に制御された環境が必要である。
SpotLessSplatsは、トレーニング済みと汎用の機能と頑健な最適化を併用して、過渡的障害を効果的に無視するアプローチである。
論文 参考訳(メタデータ) (2024-06-28T17:07:11Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
制約のない写真コレクションからの新規ビュー合成(NVS)は、コンピュータグラフィックスでは困難である。
写真コレクションからのシーン再構築のための効率的なポイントベース微分可能レンダリングフレームワークを提案する。
提案手法は、新しいビューのレンダリング品質と、高収束・レンダリング速度の外観合成において、既存のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-06-04T15:17:37Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus [56.45194233357833]
3DGSを分散訓練するDoGaussianを提案する。
大規模シーンで評価すると,3DGSのトレーニングを6回以上高速化する。
論文 参考訳(メタデータ) (2024-05-22T19:17:58Z) - CityGaussian: Real-time High-quality Large-Scale Scene Rendering with Gaussians [64.6687065215713]
CityGaussianは、大規模な3DGSのトレーニングとレンダリングを効率化するために、新しい分別/分別トレーニングアプローチとLevel-of-Detail(LoD)戦略を採用している。
我々のアプローチは最先端のレンダリング品質を実現し、大規模なシーンを全く異なるスケールで一貫したリアルタイムレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-04-01T14:24:40Z) - StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting [141.05924680451804]
StyleGaussianは、新しい3Dスタイル転送技術である。
任意の画像のスタイルを毎秒10フレームの3Dシーンに即時転送できる(fps)。
論文 参考訳(メタデータ) (2024-03-12T16:44:52Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。