論文の概要: KKLIP: Knowledge Distillation Exploiting K-means Clustering for Language-Image Pre-Training
- arxiv url: http://arxiv.org/abs/2412.03513v1
- Date: Wed, 04 Dec 2024 17:56:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:10:23.664334
- Title: KKLIP: Knowledge Distillation Exploiting K-means Clustering for Language-Image Pre-Training
- Title(参考訳): KKLIP:言語画像事前学習のためのK平均クラスタリングのための知識蒸留爆発
- Authors: Kuei-Chun Kao,
- Abstract要約: 本稿では,CLIPの品質向上を目的とした新しいアプローチであるKKLIPを紹介する。
本手法は, テキスト埋め込み蒸留, 概念学習, コントラスト学習の3つの目的からなる。
実験の結果,KKLIPはテキストエンコーダと画像エンコーダの両方の品質を向上させることがわかった。
- 参考スコア(独自算出の注目度): 0.8974383702601351
- License:
- Abstract: Recently, CLIP has emerged as a valuable model for aligning image and text information in multi-modal scenarios. However, researchers have observed limitations in the ability of CLIP's text and image encoders to extract detailed knowledge from caption-image pairs. In response, this paper introduces KKLIP, a novel approach designed to enhance the quality of CLIP by incorporating a new knowledge distillation (KD) method derived from Llama 2. Our method comprises three objectives: Text Embedding Distillation, Concept Learning, and Contrastive Learning. Firstly, Text Embedding Distillation involves training the KKLIP text encoder to emulate the teacher model, Llama 2. Secondly, Concept Learning assigns a soft concept label to each caption-image pair through offline k-means clustering of text information from Llama 2, allowing KKLIP to learn from these soft concept labels. Finally, Contrastive Learning harmonizes text and image embeddings. Our experimental results demonstrate that KKLIP enhances the quality of both text and image encoders.
- Abstract(参考訳): 近年、CLIPは、画像とテキスト情報をマルチモーダルシナリオで整列するための貴重なモデルとして登場した。
しかし、研究者はCLIPのテキストと画像エンコーダがキャプションとイメージのペアから詳細な知識を抽出する能力に制限があることを発見した。
そこで本研究では,Llama 2から派生した新しい知識蒸留(KD)手法を取り入れて,CLIPの品質向上を目指した新しい手法であるKKLIPを提案する。
本手法は, テキスト埋め込み蒸留, 概念学習, コントラスト学習の3つの目的からなる。
まず、テキスト埋め込み蒸留は、教師モデルであるLlama 2をエミュレートするためにKKLIPテキストエンコーダを訓練する。
次に、概念学習は、Llama 2からのテキスト情報のオフラインk平均クラスタリングを通じて、各字幕イメージペアにソフトコンセプトラベルを割り当て、KKLIPがこれらのソフトコンセプトラベルから学習できるようにする。
最後に、Contrastive Learningはテキストと画像の埋め込みを調和させる。
実験の結果,KKLIPはテキストエンコーダと画像エンコーダの両方の品質を向上させることがわかった。
関連論文リスト
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) モデルは、表現を学ぶためにテキストと視覚的モダリティ間の相互情報を最大化する。
そこで本研究では,テキスト・ツー・イメージ・ジェネレータを用いて,文脈内学習による「ハード」の負の字幕生成と,それに対応する負のイメージ生成が解となることを示す。
提案手法はTripletCLIPと呼ばれ,CLIPの構成能力を向上し,SugarCrepeベンチマークでは9%以上向上した。
論文 参考訳(メタデータ) (2024-11-04T19:24:59Z) - Interpreting and Analyzing CLIP's Zero-Shot Image Classification via Mutual Knowledge [20.09852220432504]
Contrastive Language-Image Pretraining (CLIP)は画像とテキストのクラス表現を共有埋め込み空間にマッピングすることでゼロショット画像分類を行う。
この研究は、2つのモード間の相互知識のレンズから、画像分類のためのCLIPモデルを解釈するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-10-16T20:18:21Z) - FLIER: Few-shot Language Image Models Embedded with Latent Representations [2.443383032451177]
画像認識のための潜在表現(FLIER)を組み込んだFew-shot Language Image Model。
まず、GPT-3からのテキスト入力で、安定拡散による画像とそれに対応する潜在表現を生成する。
潜在表現を「モデル理解可能なピクセル」として、2つの畳み込み層を持つ柔軟な畳み込みニューラルネットワークを導入し、潜り込みエンコーダとする。
論文 参考訳(メタデータ) (2024-10-10T06:27:46Z) - S-CLIP: Semi-supervised Vision-Language Learning using Few Specialist
Captions [69.01985134519244]
対照的な言語画像事前学習(CLIP)のような視覚言語モデルは、自然画像領域において顕著な結果を示した。
S-CLIPはCLIPを訓練するための半教師付き学習手法であり、追加の未ペア画像を利用する。
S-CLIPは、ゼロショット分類でCLIPを10%改善し、リモートセンシングベンチマークで画像テキスト検索で4%改善した。
論文 参考訳(メタデータ) (2023-05-23T14:18:11Z) - CLIP2GAN: Towards Bridging Text with the Latent Space of GANs [128.47600914674985]
本稿では,CLIPモデルとStyleGANを利用した新しいフレームワークであるCLIP2GANを提案する。
CLIP2GANのキーとなるアイデアは、CLIPの出力機能埋め込みスペースとStyleGANの入力潜在スペースをブリッジすることです。
論文 参考訳(メタデータ) (2022-11-28T04:07:17Z) - CLIP-ReID: Exploiting Vision-Language Model for Image Re-Identification
without Concrete Text Labels [28.42405456691034]
本稿では,画像再識別作業における視覚的表現の改善を目的とした2段階戦略を提案する。
鍵となるアイデアは、各IDの学習可能なテキストトークンセットを通じて、CLIPのクロスモーダル記述能力をフル活用することだ。
提案手法の有効性は、人や車両のReIDタスクのための複数のデータセット上で検証される。
論文 参考訳(メタデータ) (2022-11-25T09:41:57Z) - ComCLIP: Training-Free Compositional Image and Text Matching [19.373706257771673]
コントラスト言語-画像事前訓練は画像とテキストのマッチングに優れたゼロショット性能を示した。
我々は新しいtextbftextittraining-free compositional CLIP model (ComCLIP) を提案する。
ComCLIPは、入力された画像を被写体、オブジェクト、アクションのサブイメージに切り離し、CLIPのビジョンエンコーダとテキストエンコーダを構成して、合成テキスト埋め込みとサブイメージ埋め込みに対する進化的なマッチングを実行する。
論文 参考訳(メタデータ) (2022-11-25T01:37:48Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
非コントラスト型言語画像事前学習(nCLIP)の有効性について検討する。
我々は、CLIPとnCLIPを組み合わせたマルチタスクフレームワークであるxCLIPを紹介し、nCLIPが機能セマンティクスの強化にCLIPを支援することを示す。
論文 参考訳(メタデータ) (2022-10-17T17:57:46Z) - CODER: Coupled Diversity-Sensitive Momentum Contrastive Learning for
Image-Text Retrieval [108.48540976175457]
クロスモーダル表現を改善するために,共用ダイバーシティ・センシティブ・モーメント・コンストラシティブ・ラーニング(CODER)を提案する。
両モードの動的辞書を導入し、画像テキストペアのスケールを拡大し、適応的な負のペア重み付けにより多様性に敏感性を実現する。
MSCOCOとFlicker30Kという2つの人気のあるベンチマークで実施された実験は、CODERが最先端のアプローチを著しく上回っていることを証明している。
論文 参考訳(メタデータ) (2022-08-21T08:37:50Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。