論文の概要: Enhancing CLIP Conceptual Embedding through Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2412.03513v2
- Date: Sat, 07 Dec 2024 13:01:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 11:30:48.339315
- Title: Enhancing CLIP Conceptual Embedding through Knowledge Distillation
- Title(参考訳): 知識蒸留によるCLIP概念埋め込みの促進
- Authors: Kuei-Chun Kao,
- Abstract要約: 本稿では,CLIPの性能向上を目的とした革新的アプローチであるKnowledge-CLIPを提案する。
提案手法は, テキスト埋め込み蒸留, 概念学習, コントラスト学習の3つの主要な目標に焦点をあてる。
実験の結果,提案手法はテキストエンコーダと画像エンコーダの両方の性能を向上させることがわかった。
- 参考スコア(独自算出の注目度): 0.8974383702601351
- License:
- Abstract: Recently, CLIP has become an important model for aligning images and text in multi-modal contexts. However, researchers have identified limitations in the ability of CLIP's text and image encoders to extract detailed knowledge from pairs of captions and images. In response, this paper presents Knowledge-CLIP, an innovative approach designed to improve CLIP's performance by integrating a new knowledge distillation (KD) method based on Llama 2. Our approach focuses on three key objectives: Text Embedding Distillation, Concept Learning, and Contrastive Learning. First, Text Embedding Distillation involves training the Knowledge-CLIP text encoder to mirror the teacher model, Llama 2. Next, Concept Learning assigns a soft concept label to each caption-image pair by employing offline K-means clustering on text data from Llama 2, enabling Knowledge-CLIP to learn from these soft concept labels. Lastly, Contrastive Learning aligns the text and image embeddings. Our experimental findings show that the proposed model improves the performance of both text and image encoders.
- Abstract(参考訳): 近年、CLIPはマルチモーダルコンテキストにおける画像とテキストの整列のための重要なモデルとなっている。
しかし、研究者は、CLIPのテキストと画像エンコーダがキャプションと画像のペアから詳細な知識を抽出する能力の限界を特定している。
そこで本研究では,Llama 2に基づく新しい知識蒸留(KD)手法を統合することにより,CLIPの性能向上を図る革新的な手法であるKnowledge-CLIPを提案する。
提案手法は, テキスト埋め込み蒸留, 概念学習, コントラスト学習の3つの主要な目標に焦点をあてる。
まず、テキスト埋め込み蒸留(Text Embedding Distillation)は、教師モデルであるLlama 2を模倣するために、Knowledge-CLIPテキストエンコーダをトレーニングする。
次に、概念学習は、Llama 2のテキストデータにオフラインK平均クラスタリングを用いて、各キャプションイメージペアにソフトコンセプトラベルを割り当て、これらのソフトコンセプトラベルからナレッジCLIPを学習できるようにする。
最後に、Contrastive Learningはテキストと画像の埋め込みを調整する。
実験の結果,提案手法はテキストエンコーダと画像エンコーダの両方の性能を向上させることがわかった。
関連論文リスト
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) モデルは、表現を学ぶためにテキストと視覚的モダリティ間の相互情報を最大化する。
そこで本研究では,テキスト・ツー・イメージ・ジェネレータを用いて,文脈内学習による「ハード」の負の字幕生成と,それに対応する負のイメージ生成が解となることを示す。
提案手法はTripletCLIPと呼ばれ,CLIPの構成能力を向上し,SugarCrepeベンチマークでは9%以上向上した。
論文 参考訳(メタデータ) (2024-11-04T19:24:59Z) - Interpreting and Analyzing CLIP's Zero-Shot Image Classification via Mutual Knowledge [20.09852220432504]
Contrastive Language-Image Pretraining (CLIP)は画像とテキストのクラス表現を共有埋め込み空間にマッピングすることでゼロショット画像分類を行う。
この研究は、2つのモード間の相互知識のレンズから、画像分類のためのCLIPモデルを解釈するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-10-16T20:18:21Z) - FLIER: Few-shot Language Image Models Embedded with Latent Representations [2.443383032451177]
画像認識のための潜在表現(FLIER)を組み込んだFew-shot Language Image Model。
まず、GPT-3からのテキスト入力で、安定拡散による画像とそれに対応する潜在表現を生成する。
潜在表現を「モデル理解可能なピクセル」として、2つの畳み込み層を持つ柔軟な畳み込みニューラルネットワークを導入し、潜り込みエンコーダとする。
論文 参考訳(メタデータ) (2024-10-10T06:27:46Z) - S-CLIP: Semi-supervised Vision-Language Learning using Few Specialist
Captions [69.01985134519244]
対照的な言語画像事前学習(CLIP)のような視覚言語モデルは、自然画像領域において顕著な結果を示した。
S-CLIPはCLIPを訓練するための半教師付き学習手法であり、追加の未ペア画像を利用する。
S-CLIPは、ゼロショット分類でCLIPを10%改善し、リモートセンシングベンチマークで画像テキスト検索で4%改善した。
論文 参考訳(メタデータ) (2023-05-23T14:18:11Z) - CLIP2GAN: Towards Bridging Text with the Latent Space of GANs [128.47600914674985]
本稿では,CLIPモデルとStyleGANを利用した新しいフレームワークであるCLIP2GANを提案する。
CLIP2GANのキーとなるアイデアは、CLIPの出力機能埋め込みスペースとStyleGANの入力潜在スペースをブリッジすることです。
論文 参考訳(メタデータ) (2022-11-28T04:07:17Z) - CLIP-ReID: Exploiting Vision-Language Model for Image Re-Identification
without Concrete Text Labels [28.42405456691034]
本稿では,画像再識別作業における視覚的表現の改善を目的とした2段階戦略を提案する。
鍵となるアイデアは、各IDの学習可能なテキストトークンセットを通じて、CLIPのクロスモーダル記述能力をフル活用することだ。
提案手法の有効性は、人や車両のReIDタスクのための複数のデータセット上で検証される。
論文 参考訳(メタデータ) (2022-11-25T09:41:57Z) - ComCLIP: Training-Free Compositional Image and Text Matching [19.373706257771673]
コントラスト言語-画像事前訓練は画像とテキストのマッチングに優れたゼロショット性能を示した。
我々は新しいtextbftextittraining-free compositional CLIP model (ComCLIP) を提案する。
ComCLIPは、入力された画像を被写体、オブジェクト、アクションのサブイメージに切り離し、CLIPのビジョンエンコーダとテキストエンコーダを構成して、合成テキスト埋め込みとサブイメージ埋め込みに対する進化的なマッチングを実行する。
論文 参考訳(メタデータ) (2022-11-25T01:37:48Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
非コントラスト型言語画像事前学習(nCLIP)の有効性について検討する。
我々は、CLIPとnCLIPを組み合わせたマルチタスクフレームワークであるxCLIPを紹介し、nCLIPが機能セマンティクスの強化にCLIPを支援することを示す。
論文 参考訳(メタデータ) (2022-10-17T17:57:46Z) - CODER: Coupled Diversity-Sensitive Momentum Contrastive Learning for
Image-Text Retrieval [108.48540976175457]
クロスモーダル表現を改善するために,共用ダイバーシティ・センシティブ・モーメント・コンストラシティブ・ラーニング(CODER)を提案する。
両モードの動的辞書を導入し、画像テキストペアのスケールを拡大し、適応的な負のペア重み付けにより多様性に敏感性を実現する。
MSCOCOとFlicker30Kという2つの人気のあるベンチマークで実施された実験は、CODERが最先端のアプローチを著しく上回っていることを証明している。
論文 参考訳(メタデータ) (2022-08-21T08:37:50Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。