A Review on Scientific Knowledge Extraction using Large Language Models in Biomedical Sciences
- URL: http://arxiv.org/abs/2412.03531v1
- Date: Wed, 04 Dec 2024 18:26:13 GMT
- Title: A Review on Scientific Knowledge Extraction using Large Language Models in Biomedical Sciences
- Authors: Gabriel Lino Garcia, João Renato Ribeiro Manesco, Pedro Henrique Paiola, Lucas Miranda, Maria Paola de Salvo, João Paulo Papa,
- Abstract summary: This paper reviews the state-of-the-art applications of large language models (LLMs) in the biomedical domain.
LLMs demonstrate remarkable potential, but significant challenges remain, including issues related to hallucinations, contextual understanding, and the ability to generalize.
We aim to improve access to medical literature and facilitate meaningful discoveries in healthcare.
- Score: 1.8308043661908204
- License:
- Abstract: The rapid advancement of large language models (LLMs) has opened new boundaries in the extraction and synthesis of medical knowledge, particularly within evidence synthesis. This paper reviews the state-of-the-art applications of LLMs in the biomedical domain, exploring their effectiveness in automating complex tasks such as evidence synthesis and data extraction from a biomedical corpus of documents. While LLMs demonstrate remarkable potential, significant challenges remain, including issues related to hallucinations, contextual understanding, and the ability to generalize across diverse medical tasks. We highlight critical gaps in the current research literature, particularly the need for unified benchmarks to standardize evaluations and ensure reliability in real-world applications. In addition, we propose directions for future research, emphasizing the integration of state-of-the-art techniques such as retrieval-augmented generation (RAG) to enhance LLM performance in evidence synthesis. By addressing these challenges and utilizing the strengths of LLMs, we aim to improve access to medical literature and facilitate meaningful discoveries in healthcare.
Related papers
- Knowledge Graph-Driven Retrieval-Augmented Generation: Integrating Deepseek-R1 with Weaviate for Advanced Chatbot Applications [45.935798913942904]
We propose an innovative framework that combines structured biomedical knowledge with large language models (LLMs)
Our system develops a thorough knowledge graph by identifying and refining causal relationships and named entities from medical abstracts related to age-related macular degeneration (AMD)
Using a vector-based retrieval process and a locally deployed language model, our framework produces responses that are both contextually relevant and verifiable, with direct references to clinical evidence.
arXiv Detail & Related papers (2025-02-16T12:52:28Z) - A Survey for Large Language Models in Biomedicine [31.719451674137844]
This review is based on an analysis of 484 publications sourced from databases including PubMed, Web of Science, and arXiv.
We explore the capabilities of LLMs in zero-shot learning across a broad spectrum of biomedical tasks, including diagnostic assistance, drug discovery, and personalized medicine.
We discuss the challenges that LLMs face in the biomedicine domain including data privacy concerns, limited model interpretability, issues with dataset quality, and ethics.
arXiv Detail & Related papers (2024-08-29T12:39:16Z) - Towards Reliable Medical Question Answering: Techniques and Challenges in Mitigating Hallucinations in Language Models [1.03590082373586]
This paper conducts a scoping study of existing techniques for mitigating hallucinations in knowledge-based task in general and especially for medical domains.
Key methods covered in the paper include Retrieval-Augmented Generation (RAG)-based techniques, iterative feedback loops, supervised fine-tuning, and prompt engineering.
These techniques, while promising in general contexts, require further adaptation and optimization for the medical domain due to its unique demands for up-to-date, specialized knowledge and strict adherence to medical guidelines.
arXiv Detail & Related papers (2024-08-25T11:09:15Z) - LLMs are not Zero-Shot Reasoners for Biomedical Information Extraction [13.965777046473885]
Large Language Models (LLMs) are increasingly adopted for applications in healthcare.
It is unclear how well LLMs perform on tasks that are traditionally pursued in the biomedical domain.
arXiv Detail & Related papers (2024-08-22T09:37:40Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension.
The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines.
As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration.
arXiv Detail & Related papers (2024-01-26T05:33:34Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.