Improving Perturbation Theory with the Sum-of-Squares: Third Order
- URL: http://arxiv.org/abs/2412.03564v1
- Date: Wed, 04 Dec 2024 18:56:44 GMT
- Title: Improving Perturbation Theory with the Sum-of-Squares: Third Order
- Authors: M. B. Hastings,
- Abstract summary: We give a general method, an analogue of Wigner's $2n+1$ rule for perturbation theory, to compute the order of the error in a given sum-of-squares ansatz.<n>We also give a method for finding solutions of the dual semidefinite program, based on a perturbative ansatz combined with a self-consistent method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The sum-of-squares method can give rigorous lower bounds on the energy of quantum Hamiltonians. Unfortunately, typically using this method requires solving a semidefinite program, which can be computationally expensive. Further, the typically used degree-$4$ sum-of-squares (also known as the 2RDM method) does not correctly reproduce second order perturbation theory. Here, we give a general method, an analogue of Wigner's $2n+1$ rule for perturbation theory, to compute the order of the error in a given sum-of-squares ansatz. We also give a method for finding solutions of the dual semidefinite program, based on a perturbative ansatz combined with a self-consistent method. As an illustration, we show that for a class of model Hamiltonians (with a gap in the quadratic term and quartic terms chosen as i.i.d. Gaussians), this self-consistent sum-of-squares method significantly improves over the 2RDM method in both speed and accuracy, and also improves over low order perturbation theory. We then explain why the particular ansatz we implement is not suitable for use for quantum chemistry Hamiltonians (due to presence of certain large diagonal terms), but we suggest a modified ansatz that may be suitable, which will be the subject of future work.
Related papers
- Variational principle for the time evolution operator, its usefulness in effective theories of condensed matter systems and a glimpse into the role played by the quantum geometry of unitary transformations [0.0]
We show how a generalization of the quantum geometric tensor for unitary operators plays a central role in parameter evolution.
We demonstrate that our results can also be employed to improve degenerate perturbation theory in a non-perturbative fashion.
Our work hints at how the appearance of mathematically beautiful concepts like quantum geometry can indicate an opportunity to dig for approximations beyond typical perturbation theory.
arXiv Detail & Related papers (2025-04-13T10:26:26Z) - A Non-Convex Optimization Strategy for Computing Convex-Roof Entanglement [0.0]
We develop a numerical methodology for the computation of entanglement measures for mixed states.
We find that the method works well enough to reliably reproduce curves.
arXiv Detail & Related papers (2024-12-13T14:29:02Z) - Quantum Algorithm for Solving the Advection Equation using Hamiltonian Simulation [0.0]
One-dimensional advection can be simulated directly since the central finite difference operator for first-order derivatives is anti-Hermitian.
A single copy of the initial quantum state is required and the circuit depth grows linearly with the required number of time steps.
arXiv Detail & Related papers (2023-12-15T13:39:27Z) - On the complexity of implementing Trotter steps [2.1369834525800138]
We develop methods to perform faster Trotter steps with complexity sublinear in number of terms.
We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank.
Our result suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter synthesis steps with lower gate complexity.
arXiv Detail & Related papers (2022-11-16T19:00:01Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Quantum-based solution of time-dependent complex Riccati equations [0.0]
We show a time-dependent complex Riccati equation (TDCRE) as the solution of the time evolution operator (TEO) of quantum systems.
The inherited symmetries of quantum systems can be recognized by a simple inspection of the TDCRE.
As an application, but also as a consistency test, we compare our solution with the analytic one for the Bloch-Riccati equation.
arXiv Detail & Related papers (2022-09-07T23:52:04Z) - DRSOM: A Dimension Reduced Second-Order Method [13.778619250890406]
Under a trust-like framework, our method preserves the convergence of the second-order method while using only information in a few directions.
Theoretically, we show that the method has a local convergence and a global convergence rate of $O(epsilon-3/2)$ to satisfy the first-order and second-order conditions.
arXiv Detail & Related papers (2022-07-30T13:05:01Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Hamiltonian simulation with random inputs [74.82351543483588]
Theory of average-case performance of Hamiltonian simulation with random initial states.
Numerical evidence suggests that this theory accurately characterizes the average error for concrete models.
arXiv Detail & Related papers (2021-11-08T19:08:42Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.