論文の概要: Resampled Mutual Information for Clustering and Community Detection
- arxiv url: http://arxiv.org/abs/2412.03584v1
- Date: Thu, 21 Nov 2024 04:20:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 08:47:16.798746
- Title: Resampled Mutual Information for Clustering and Community Detection
- Title(参考訳): クラスタリングとコミュニティ検出のためのサンプル相互情報
- Authors: Cheaheon Lim,
- Abstract要約: クラスタリング類似性の新たな尺度であるResMI(resampled mutual information)を導入する。
ResMIは定数基底線特性を満たすが、調整項を必要としないという利点がある。
ResMIは2つの実接触追跡ネットワークにおいて有意義なコミュニティ構造を同定する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce resampled mutual information (ResMI), a novel measure of clustering similarity that combines insights from information theoretic and pair counting approaches to clustering and community detection. Similar to chance-corrected measures, ResMI satisfies the constant baseline property, but it has the advantages of not requiring adjustment terms and being fully interpretable in the language of information theory. Experiments on synthetic datasets demonstrate that ResMI is robust to common biases exhibited by existing measures, particularly in settings with high cluster counts and asymmetric cluster distributions. Additionally, we show that ResMI identifies meaningful community structures in two real contact tracing networks.
- Abstract(参考訳): 本稿では,情報理論とペアカウントによるクラスタリングとコミュニティ検出のアプローチを組み合わせた,クラスタリング類似性の新たな尺度であるResMIを紹介する。
確率補正測度と同様に、ResMIは一定の基準線特性を満たすが、調整項を必要とせず、情報理論の言語で完全に解釈可能であるという利点がある。
合成データセットの実験では、ResMIは既存の測定値、特に高いクラスタ数と非対称なクラスタ分布の設定で示される共通のバイアスに対して堅牢であることが示された。
さらに、ResMIは、2つの実接触追跡ネットワークにおいて有意義なコミュニティ構造を識別することを示す。
関連論文リスト
- Cluster-Aware Similarity Diffusion for Instance Retrieval [64.40171728912702]
拡散に基づく再ランク付け(diffusion-based re-level)は、隣り合うグラフで類似性の伝播を実行することで、インスタンスを検索する一般的な方法である。
本稿では,新しいクラスタ・アウェア類似性(CAS)拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-06-04T14:19:50Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
本研究では,新しいクラスタ化フェデレーション学習(CFL)アプローチと,非独立かつ同一に分散した(非IID)データセットを統合することのメリットについて検討する。
データ分布における非IIDの度合いを測定する一般化ギャップの詳細な理論的解析について述べる。
非IID条件によって引き起こされる課題に対処する解決策は、特性の分析によって提案される。
論文 参考訳(メタデータ) (2024-03-05T17:49:09Z) - Fundamental limits of community detection from multi-view data:
multi-layer, dynamic and partially labeled block models [7.778975741303385]
現代のネットワーク分析におけるマルチビューデータのコミュニティ検出について検討する。
我々は,データと潜在パラメータ間の相互情報を特徴付ける。
コミュニティ検出のための近似メッセージパッシングに基づく反復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-16T07:13:32Z) - CLAMS: A Cluster Ambiguity Measure for Estimating Perceptual Variability
in Visual Clustering [23.625877882403227]
本稿では,クラスタアンビグニティ(Cluster Ambiguity)と呼ばれる視覚的クラスタリングを行う際の知覚的変動について検討する。
我々は,モノクローム散乱体におけるクラスタのあいまいさを自動的に予測する,データ駆動型視覚品質尺度であるCLAMSを紹介する。
論文 参考訳(メタデータ) (2023-08-01T04:46:35Z) - A Proposition-Level Clustering Approach for Multi-Document Summarization [82.4616498914049]
クラスタリングアプローチを再検討し、より正確な情報アライメントの提案をグループ化します。
提案手法は,有意な命題を検出し,それらをパラフラスティックなクラスタに分類し,その命題を融合して各クラスタの代表文を生成する。
DUC 2004 とTAC 2011 データセットでは,従来の最先端 MDS 法よりも要約法が優れている。
論文 参考訳(メタデータ) (2021-12-16T10:34:22Z) - Integrating Auxiliary Information in Self-supervised Learning [94.11964997622435]
まず、補助情報がデータ構造に関する有用な情報をもたらす可能性があることを観察する。
補助情報に基づいてデータクラスタを構築する。
我々はCl-InfoNCEがデータクラスタリング情報を活用するためのより良いアプローチであることを示した。
論文 参考訳(メタデータ) (2021-06-05T11:01:15Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Real Elliptically Skewed Distributions and Their Application to Robust
Cluster Analysis [5.137336092866906]
本稿では,Really Skewed(RESK)分布と関連するクラスタリングアルゴリズムの新しいクラスを提案する。
非対称分散および重み付きデータクラスタは、様々な現実世界のアプリケーションで報告されている。
論文 参考訳(メタデータ) (2020-06-30T10:44:39Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z) - Fragmentation Coagulation Based Mixed Membership Stochastic Blockmodel [17.35449041036449]
MMSB(Mixed-Membership Blockmodel)は,ネットワークデータの基盤となる複雑な隠れ構造を学習するのに適した,最先端のベイズ的手法の一つとして提案されている。
本モデルでは,エンティティのコミュニティ情報を抽出するエンティティベースのクラスタリングと,リンクのグループ情報を同時に導出するリンケージベースのクラスタリングを行う。
コミュニティ構造とグループ互換行列を統合することにより、MMSBの一般化版を導出する。
論文 参考訳(メタデータ) (2020-01-17T22:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。