CovidLLM: A Robust Large Language Model with Missing Value Adaptation and Multi-Objective Learning Strategy for Predicting Disease Severity and Clinical Outcomes in COVID-19 Patients
- URL: http://arxiv.org/abs/2412.03593v1
- Date: Thu, 28 Nov 2024 11:27:38 GMT
- Title: CovidLLM: A Robust Large Language Model with Missing Value Adaptation and Multi-Objective Learning Strategy for Predicting Disease Severity and Clinical Outcomes in COVID-19 Patients
- Authors: Shengjun Zhu, Siyu Liu, Yang Li, Qing Lei, Hongyan Hou, Hewei Jiang, Shujuan Guo, Feng Wang, Rongshang Chen, Xionglin Fan, Shengce Tao, Jiaxin Cai,
- Abstract summary: Coronavirus Disease 2019 (COVID-19) has caused millions of deaths worldwide.
Early identification of the severity and clinical outcomes of the disease in these patients is vital to prevent adverse prognoses.
Our research focuses primarily on constructing specialized prompts and adopting multi-objective learning strategies.
- Score: 4.063838267166007
- License:
- Abstract: Coronavirus Disease 2019 (COVID-19), which emerged in 2019, has caused millions of deaths worldwide. Although effective vaccines have been developed to mitigate severe symptoms, certain populations, particularly the elderly and those with comorbidities, remain at high risk for severe outcomes and increased mortality. Consequently, early identification of the severity and clinical outcomes of the disease in these patients is vital to prevent adverse prognoses. Although traditional machine learning and deep learning models have been widely employed in this area, the potential of large language models (LLMs) remains largely unexplored. Our research focuses primarily on constructing specialized prompts and adopting multi-objective learning strategies. We started by selecting serological indicators that significantly correlate with clinical outcomes and disease severity to serve as input data for the model. Blood test samples often contain numerous missing values, and traditional models generally rely on imputation to handle these gaps in the data. In contrast, LLMs offer the advantage of robust semantic understanding. By setting prompts, we can explicitly inform the model when a feature's value is missing, without the need for imputation. For the multi-objective learning strategy, the model is designed to first predict disease severity and then predict clinical outcomes. Given that LLMs utilize both the input text and the generated tokens as input for generating the next token, the predicted severity is used as a basis for generating the clinical outcome. During the fine-tuning of the LLM, the two objectives influence and improve each other. Our experiments were implemented based on the ChatGLM model. The results demonstrate the effectiveness of LLMs in this task, suggesting promising potential for further development.
Related papers
- Memorize and Rank: Elevating Large Language Models for Clinical Diagnosis Prediction [10.403187385041702]
We introduce MERA, a clinical diagnosis prediction model that bridges pertaining natural language knowledge with medical practice.
We apply hierarchical contrastive learning on a disease candidate ranking list to alleviate the large decision space issue.
arXiv Detail & Related papers (2025-01-28T22:38:45Z) - Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
We use neuro-symbolic methods, specifically Logical Neural Networks (LNNs), to develop explainable models for diagnosis prediction.
Our models, particularly $M_textmulti-pathway$ and $M_textcomprehensive$, demonstrate superior performance over traditional models.
These findings highlight the potential of neuro-symbolic approaches in bridging the gap between accuracy and explainability in healthcare AI applications.
arXiv Detail & Related papers (2024-10-01T22:47:24Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
Large Language Models (LLMs) are traditionally tailored for natural language processing.
This research investigates the adaptability of LLMs, like GPT-4, to EHR data.
In response to the longitudinal, sparse, and knowledge-infused nature of EHR data, our prompting approach involves taking into account specific characteristics.
arXiv Detail & Related papers (2024-01-25T20:14:50Z) - Adapting Machine Learning Diagnostic Models to New Populations Using a Small Amount of Data: Results from Clinical Neuroscience [21.420302408947194]
We develop a weighted empirical risk minimization approach that optimally combines data from a source group to make predictions on a target group.
We apply this method to multi-source data of 15,363 individuals from 20 neuroimaging studies to build ML models for diagnosis of Alzheimer's disease and estimation of brain age.
arXiv Detail & Related papers (2023-08-06T18:05:39Z) - Predicting multiple sclerosis disease severity with multimodal deep
neural networks [10.599189568556508]
We describe a pilot effort to leverage structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient's MS disease severity.
The proposed pipeline demonstrates up to 25% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data.
arXiv Detail & Related papers (2023-04-08T16:23:18Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.