Online Physics-Informed Dynamic Mode Decomposition: Theory and Applications
- URL: http://arxiv.org/abs/2412.03609v2
- Date: Wed, 19 Feb 2025 07:36:02 GMT
- Title: Online Physics-Informed Dynamic Mode Decomposition: Theory and Applications
- Authors: Biqi Chen, Ying Wang,
- Abstract summary: Dynamic Mode Decomposition (DMD) has received increasing research attention due to its capability to analyze and model complex dynamical systems.
We present Online Physics-informed DMD (OPIDMD), a novel adaptation of DMD into a convex optimization framework.
- Score: 3.31440855661969
- License:
- Abstract: Dynamic Mode Decomposition (DMD) has received increasing research attention due to its capability to analyze and model complex dynamical systems. However, it faces challenges in computational efficiency, noise sensitivity, and difficulty adhering to physical laws, which negatively affect its performance. Addressing these issues, we present Online Physics-informed DMD (OPIDMD), a novel adaptation of DMD into a convex optimization framework. This approach not only ensures convergence to a unique global optimum, but also enhances the efficiency and accuracy of modeling dynamical systems in an online setting. Leveraging the Bayesian DMD framework, we propose a probabilistic interpretation of Physics-informed DMD (piDMD), examining the impact of physical constraints on the DMD linear operator. Further, we implement online proximal gradient descent and formulate specific algorithms to tackle problems with different physical constraints, enabling real-time solutions across various scenarios. Compared with existing algorithms such as Exact DMD, Online DMD, and piDMD, OPIDMD achieves the best prediction performance in short-term forecasting, e.g. an $R^2$ value of 0.991 for noisy Lorenz system. The proposed method employs a time-varying linear operator, offering a promising solution for the real-time simulation and control of complex dynamical systems.
Related papers
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)
We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.
We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Parsimonious Dynamic Mode Decomposition: A Robust and Automated Approach for Optimally Sparse Mode Selection in Complex Systems [0.40964539027092917]
This paper introduces the Parsimonious Dynamic Mode Decomposition (parsDMD)
ParsDMD is a novel algorithm designed to automatically select an optimally sparse subset of dynamic modes for both temporal and purely temporal data.
It is validated on a diverse range of datasets, including standing wave signals, identifying hidden dynamics, fluid dynamics simulations, and atmospheric sea-surface temperature (SST) data.
arXiv Detail & Related papers (2024-10-22T03:00:11Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
The proposed framework consists of two stages, offline and online.
The online stage leverages those LANDO models to generate new data at a desired time instant.
dimensionality reduction technique is applied to high-dimensional dynamical systems to reduce the computational cost of training.
arXiv Detail & Related papers (2024-09-25T11:13:50Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Coupled and Uncoupled Dynamic Mode Decomposition in Multi-Compartmental
Systems with Applications to Epidemiological and Additive Manufacturing
Problems [58.720142291102135]
We show that Dynamic Decomposition (DMD) may be a powerful tool when applied to nonlinear problems.
In particular, we show interesting numerical applications to a continuous delayed-SIRD model for Covid-19.
arXiv Detail & Related papers (2021-10-12T21:42:14Z) - Bagging, optimized dynamic mode decomposition (BOP-DMD) for robust,
stable forecasting with spatial and temporal uncertainty-quantification [2.741266294612776]
Dynamic mode decomposition (DMD) provides a framework for learning a best-fit linear dynamics model over snapshots of temporal, or-temporal, data.
The majority of DMD algorithms are prone to bias errors from noisy measurements of the dynamics, leading to poor model fits and unstable forecasting capabilities.
The optimized DMD algorithm minimizes the model bias with a variable projection optimization, thus leading to stabilized forecasting capabilities.
arXiv Detail & Related papers (2021-07-22T18:14:20Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Unifying Theorems for Subspace Identification and Dynamic Mode
Decomposition [6.735657356113614]
We propose a SID-DMD algorithm that delivers a provably optimal model and that is easy to implement.
We demonstrate our developments using a case study that aims to build dynamical models directly from video data.
arXiv Detail & Related papers (2020-03-16T19:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.