Unifying Theorems for Subspace Identification and Dynamic Mode
Decomposition
- URL: http://arxiv.org/abs/2003.07410v1
- Date: Mon, 16 Mar 2020 19:03:04 GMT
- Title: Unifying Theorems for Subspace Identification and Dynamic Mode
Decomposition
- Authors: Sungho Shin, Qiugang Lu, Victor M. Zavala
- Abstract summary: We propose a SID-DMD algorithm that delivers a provably optimal model and that is easy to implement.
We demonstrate our developments using a case study that aims to build dynamical models directly from video data.
- Score: 6.735657356113614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents unifying results for subspace identification (SID) and
dynamic mode decomposition (DMD) for autonomous dynamical systems. We observe
that SID seeks to solve an optimization problem to estimate an extended
observability matrix and a state sequence that minimizes the prediction error
for the state-space model. Moreover, we observe that DMD seeks to solve a
rank-constrained matrix regression problem that minimizes the prediction error
of an extended autoregressive model. We prove that existence conditions for
perfect (error-free) state-space and low-rank extended autoregressive models
are equivalent and that the SID and DMD optimization problems are equivalent.
We exploit these results to propose a SID-DMD algorithm that delivers a
provably optimal model and that is easy to implement. We demonstrate our
developments using a case study that aims to build dynamical models directly
from video data.
Related papers
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - On latent dynamics learning in nonlinear reduced order modeling [0.6249768559720122]
We present the novel mathematical framework of latent dynamics models (LDMs) for reduced order modeling of parameterized nonlinear time-dependent PDEs.
A time-continuous setting is employed to derive error and stability estimates for the LDM approximation of the full order model (FOM) solution.
Deep neural networks approximate the discrete LDM components, while providing a bounded approximation error with respect to the FOM.
arXiv Detail & Related papers (2024-08-27T16:35:06Z) - Stability and Generalizability in SDE Diffusion Models with Measure-Preserving Dynamics [11.919291977879801]
Inverse problems describe the process of estimating the causal factors from a set of measurements or data.
Diffusion models have shown promise as potent generative tools for solving inverse problems.
arXiv Detail & Related papers (2024-06-19T15:55:12Z) - Entropic Regression DMD (ERDMD) Discovers Informative Sparse and Nonuniformly Time Delayed Models [0.0]
We present a method which determines optimal multi-step dynamic mode decomposition models via entropic regression.
We develop a method that produces high fidelity time-delay DMD models that allow for nonuniform time space.
These models are shown to be highly efficient and robust.
arXiv Detail & Related papers (2024-06-17T20:02:43Z) - Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections [0.7614628596146602]
We propose a reduced-dimensional vector autoregressive model to extract low-dimensional dynamics from noisy data.
An optimal oblique decomposition is derived for the best predictability regarding prediction error covariance.
The superior performance and efficiency of the proposed approach are demonstrated using data sets from a synthesized Lorenz system and an industrial process from Eastman Chemical.
arXiv Detail & Related papers (2024-01-14T05:38:10Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Bagging, optimized dynamic mode decomposition (BOP-DMD) for robust,
stable forecasting with spatial and temporal uncertainty-quantification [2.741266294612776]
Dynamic mode decomposition (DMD) provides a framework for learning a best-fit linear dynamics model over snapshots of temporal, or-temporal, data.
The majority of DMD algorithms are prone to bias errors from noisy measurements of the dynamics, leading to poor model fits and unstable forecasting capabilities.
The optimized DMD algorithm minimizes the model bias with a variable projection optimization, thus leading to stabilized forecasting capabilities.
arXiv Detail & Related papers (2021-07-22T18:14:20Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.