Nonlinear Optimal Control of Electron Dynamics within Hartree-Fock Theory
- URL: http://arxiv.org/abs/2412.03672v1
- Date: Wed, 04 Dec 2024 19:06:21 GMT
- Title: Nonlinear Optimal Control of Electron Dynamics within Hartree-Fock Theory
- Authors: Harish S. Bhat, Hardeep Bassi, Christine M. Isborn,
- Abstract summary: We present a solution of this problem within time-dependent Hartree-Fock (TDHF) theory.
We frame this problem as an optimization problem constrained by the nonlinear TDHF equations.
For three molecular systems, we show that with very small neural network parametrizations of the control, our method yields solutions that achieve desired targets.
- Score: 0.8192907805418581
- License:
- Abstract: Consider the problem of determining the optimal applied electric field to drive a molecule from an initial state to a desired target state. For even moderately sized molecules, solving this problem directly using the exact equations of motion -- the time-dependent Schr\"odinger equation (TDSE) -- is numerically intractable. We present a solution of this problem within time-dependent Hartree-Fock (TDHF) theory, a mean field approximation of the TDSE. Optimality is defined in terms of minimizing the total control effort while maximizing the overlap between desired and achieved target states. We frame this problem as an optimization problem constrained by the nonlinear TDHF equations; we solve it using trust region optimization with gradients computed via a custom-built adjoint state method. For three molecular systems, we show that with very small neural network parametrizations of the control, our method yields solutions that achieve desired targets within acceptable constraints and tolerances.
Related papers
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - Real-time optimal control of high-dimensional parametrized systems by deep learning-based reduced order models [3.5161229331588095]
We propose a non-intrusive Deep Learning-based Reduced Order Modeling (DL-ROM) technique for the rapid control of systems described in terms of parametrized PDEs in multiple scenarios.
After (i) data generation, (ii) dimensionality reduction, and (iii) neural networks training in the offline phase, optimal control strategies can be rapidly retrieved in an online phase for any scenario of interest.
arXiv Detail & Related papers (2024-09-09T15:20:24Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - A Physics-informed Deep Learning Approach for Minimum Effort Stochastic
Control of Colloidal Self-Assembly [9.791617215182598]
The control objective is formulated in terms of steering the state PDFs from a prescribed initial probability measure towards a prescribed terminal probability measure with minimum control effort.
We derive the conditions of optimality for the associated optimal control problem.
The performance of the proposed solution is demonstrated via numerical simulations on a benchmark colloidal self-assembly problem.
arXiv Detail & Related papers (2022-08-19T07:01:57Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound,
Neural Scaling Law and Minimax Optimality [11.508011337440646]
We study the statistical limits of deep learning techniques for solving elliptic partial differential equations (PDEs) from random samples.
To simplify the problem, we focus on a prototype elliptic PDE: the Schr"odinger equation on a hypercube with zero Dirichlet boundary condition.
We establish upper and lower bounds for both methods, which improves upon concurrently developed upper bounds for this problem.
arXiv Detail & Related papers (2021-10-13T17:26:31Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.