Online Experimental Design With Estimation-Regret Trade-off Under Network Interference
- URL: http://arxiv.org/abs/2412.03727v3
- Date: Mon, 10 Feb 2025 05:18:01 GMT
- Title: Online Experimental Design With Estimation-Regret Trade-off Under Network Interference
- Authors: Zhiheng Zhang, Zichen Wang,
- Abstract summary: We introduce a unified interference-aware framework for online experimental design.
Compared to existing studies, we extend the definition of arm space by utilizing the statistical concept of exposure mapping.
We also propose an algorithmic implementation and discuss its generalization across different learning settings and network topology.
- Score: 7.080131271060764
- License:
- Abstract: Network interference has attracted significant attention in the field of causal inference, encapsulating various sociological behaviors where the treatment assigned to one individual within a network may affect the outcomes of others, such as their neighbors. A key challenge in this setting is that standard causal inference methods often assume independent treatment effects among individuals, which may not hold in networked environments. To estimate interference-aware causal effects, a traditional approach is to inherit the independent settings, where practitioners randomly assign experimental participants into different groups and compare their outcomes. While effective in offline settings, this strategy becomes problematic in sequential experiments, where suboptimal decision persists, leading to substantial regret. To address this issue, we introduce a unified interference-aware framework for online experimental design. Compared to existing studies, we extend the definition of arm space by utilizing the statistical concept of exposure mapping, which allows for a more flexible and context-aware representation of treatment effects in networked settings. Crucially, we establish a Pareto-optimal trade-off between estimation accuracy and regret under the network concerning both time period and arm space, which remains superior to baseline models even without network interference. Furthermore, we propose an algorithmic implementation and discuss its generalization across different learning settings and network topology.
Related papers
- Can We Validate Counterfactual Estimations in the Presence of General Network Interference? [6.092214762701847]
We introduce a new framework enabling cross-validation for counterfactual estimation.
At its core is our distribution-preserving network bootstrap method.
We extend recent causal message-passing developments by incorporating heterogeneous unit-level characteristics.
arXiv Detail & Related papers (2025-02-03T06:51:04Z) - Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Linear Contextual Bandits with Interference [14.835167982538053]
We introduce a systematic framework to address interference in Linear CB (LinCB)
We propose a series of algorithms that explicitly quantify the interference effect in the reward modeling process.
The effectiveness of our approach is demonstrated through simulations and a synthetic data generated based on MovieLens data.
arXiv Detail & Related papers (2024-09-24T02:51:00Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
We introduce an active learning approach: Active Learning in Causal Inference with Interference (ACI)
ACI uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment.
We demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements.
arXiv Detail & Related papers (2024-02-20T04:13:59Z) - Causal Message Passing for Experiments with Unknown and General Network Interference [5.294604210205507]
We introduce a new framework to accommodate complex and unknown network interference.
Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology.
We demonstrate the effectiveness of this approach across five numerical scenarios.
arXiv Detail & Related papers (2023-11-14T17:31:50Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Interference and Generalization in Temporal Difference Learning [86.31598155056035]
We study the link between generalization and interference in temporal-difference (TD) learning.
We find that TD easily leads to low-interference, under-generalizing parameters, while the effect seems reversed in supervised learning.
arXiv Detail & Related papers (2020-03-13T15:49:58Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.