論文の概要: Deep Variational Bayesian Modeling of Haze Degradation Process
- arxiv url: http://arxiv.org/abs/2412.03745v1
- Date: Wed, 04 Dec 2024 22:24:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:42:56.818473
- Title: Deep Variational Bayesian Modeling of Haze Degradation Process
- Title(参考訳): ヘイズ劣化過程の深部変分ベイズモデル
- Authors: Eun Woo Im, Junsung Shin, Sungyong Baik, Tae Hyun Kim,
- Abstract要約: 単一画像デハージングのための変分ベイズフレームワークを提案する。
ヘイズ劣化の物理モデルに基づいて,本フレームワークは新たな目的関数を導出する。
私たちのフレームワークは他の既存のデハジングネットワークにシームレスに組み込むことができます。
- 参考スコア(独自算出の注目度): 9.978089704770646
- License:
- Abstract: Relying on the representation power of neural networks, most recent works have often neglected several factors involved in haze degradation, such as transmission (the amount of light reaching an observer from a scene over distance) and atmospheric light. These factors are generally unknown, making dehazing problems ill-posed and creating inherent uncertainties. To account for such uncertainties and factors involved in haze degradation, we introduce a variational Bayesian framework for single image dehazing. We propose to take not only a clean image and but also transmission map as latent variables, the posterior distributions of which are parameterized by corresponding neural networks: dehazing and transmission networks, respectively. Based on a physical model for haze degradation, our variational Bayesian framework leads to a new objective function that encourages the cooperation between them, facilitating the joint training of and thereby boosting the performance of each other. In our framework, a dehazing network can estimate a clean image independently of a transmission map estimation during inference, introducing no overhead. Furthermore, our model-agnostic framework can be seamlessly incorporated with other existing dehazing networks, greatly enhancing the performance consistently across datasets and models.
- Abstract(参考訳): ニューラルネットワークの表現力に基づいて、近年の研究では、透過(遠方から観測者に到達する光の量)や大気光など、ヘイズ劣化に関わるいくつかの要因を無視している。
これらの要因は一般に不明であり、不眠の問題を悪化させ、固有の不確実性を生み出している。
このような不確実性やヘイズ劣化の要因を考慮し, 単体脱ハージングのための変分ベイズ的枠組みを導入する。
本稿では、クリーンな画像だけでなく、送信マップを潜伏変数とし、その後部分布を対応するニューラルネットワークによってパラメータ化することを提案する。
ヘイズ劣化の物理的モデルに基づいて,我々の変分ベイズ的枠組みは,両者の協調を奨励し,共同トレーニングを容易にし,相互のパフォーマンスを高める新たな目的関数へと導かれる。
本フレームワークでは,推定時の透過マップ推定とは無関係にクリーンな画像を推定することが可能であり,オーバーヘッドは生じない。
さらに、当社のモデルに依存しないフレームワークは、既存のデハジングネットワークにシームレスに組み込むことができ、データセットやモデル間でパフォーマンスを大幅に向上します。
関連論文リスト
- Isomorphic Pruning for Vision Models [56.286064975443026]
構造化プルーニングは、冗長なサブ構造を取り除くことによって、ディープニューラルネットワークの計算オーバーヘッドを低減する。
Isomorphic Pruningは、ネットワークアーキテクチャの範囲で有効性を示すシンプルなアプローチである。
論文 参考訳(メタデータ) (2024-07-05T16:14:53Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z) - Adversarial Attack via Dual-Stage Network Erosion [7.28871533402894]
ディープニューラルネットワークは敵の例に弱いため、微妙な摂動を加えることでディープモデルを騙すことができる。
本稿では, 既存モデルに2段階の特徴レベル摂動を適用し, 多様なモデルの集合を暗黙的に生成する手法を提案する。
我々は、非残留ネットワークと残留ネットワークの両方で包括的な実験を行い、最先端の計算手法と同様の計算コストで、より伝達可能な逆の例を得る。
論文 参考訳(メタデータ) (2022-01-01T02:38:09Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
本研究では,未知画像の後部分布を問合せ観測で近似する新しいフレームワークを開発する。
暗黙のノイズモデルと先行処理を処理し、データ生成プロセス(フォワード演算子)を組み込み、学習された再構成特性は異なるデータセット間で転送可能である。
論文 参考訳(メタデータ) (2021-10-22T10:02:48Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
我々は、画像画素ではなく特徴統計を直接摂動することで、頑健なモデルを生成することで、敵の訓練に適応する。
提案手法であるAdvBN(Adversarial Batch Normalization)は,トレーニング中に最悪の機能摂動を発生させる単一ネットワーク層である。
論文 参考訳(メタデータ) (2020-09-18T17:52:34Z) - Progressive Update Guided Interdependent Networks for Single Image
Dehazing [24.565068569913382]
さまざまな種類の迷路を持つ画像は、デハジングに重大な挑戦をすることが多い。
本稿では,新しい相互依存型デハジングとヘイズパラメータ更新器ネットワークを含むマルチネットワークデハジングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-04T17:05:48Z) - Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep
Gradient Descent [4.029853654012035]
逆問題における最近の進歩は、例えばディープニューラルネットワークのような強力なデータ駆動モデルを活用する。
ベイズニューラルネットワークによるモデル不確実性を定量化するための,スケーラブルでデータ駆動型,知識支援型計算フレームワークを開発した。
論文 参考訳(メタデータ) (2020-07-20T09:43:31Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。