Enhancing IR-based Fault Localization using Large Language Models
- URL: http://arxiv.org/abs/2412.03754v1
- Date: Wed, 04 Dec 2024 22:47:51 GMT
- Title: Enhancing IR-based Fault Localization using Large Language Models
- Authors: Shuai Shao, Tingting Yu,
- Abstract summary: This paper enhances Fault Localization (IRFL) by categorizing bug reports based on programming entities, stack traces, and natural language text.
To address inaccuracies in queries, we introduce a user and conversational-based query reformulation approach, termed LLmiRQ+.
Evaluation on 46 projects with 6,340 bug reports yields an MRR of 0.6770 and MAP of 0.5118, surpassing seven state-of-the-art IRFL techniques.
- Score: 5.032687557488094
- License:
- Abstract: Information Retrieval-based Fault Localization (IRFL) techniques aim to identify source files containing the root causes of reported failures. While existing techniques excel in ranking source files, challenges persist in bug report analysis and query construction, leading to potential information loss. Leveraging large language models like GPT-4, this paper enhances IRFL by categorizing bug reports based on programming entities, stack traces, and natural language text. Tailored query strategies, the initial step in our approach (LLmiRQ), are applied to each category. To address inaccuracies in queries, we introduce a user and conversational-based query reformulation approach, termed LLmiRQ+. Additionally, to further enhance query utilization, we implement a learning-to-rank model that leverages key features such as class name match score and call graph score. This approach significantly improves the relevance and accuracy of queries. Evaluation on 46 projects with 6,340 bug reports yields an MRR of 0.6770 and MAP of 0.5118, surpassing seven state-of-the-art IRFL techniques, showcasing superior performance.
Related papers
- Where's the Bug? Attention Probing for Scalable Fault Localization [18.699014321422023]
We present Bug Attention Probe (BAP), a method which learns state-of-the-art fault localization without any direct localization labels.
BAP is significantly more efficient than prompting, outperforming large open-weight models at a small fraction of the computational cost.
arXiv Detail & Related papers (2025-02-19T18:59:32Z) - Improved IR-based Bug Localization with Intelligent Relevance Feedback [2.9312156642007294]
Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs.
Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code.
We present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code.
arXiv Detail & Related papers (2025-01-17T20:29:38Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation [68.58373854950294]
We focus on causal reasoning and address the task of establishing causal relationships based on correlation information.
We introduce a prompting strategy for this problem that breaks the original task into fixed subquestions.
We evaluate our approach on an existing causal benchmark, Corr2Cause.
arXiv Detail & Related papers (2024-12-18T15:32:27Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
Many complex real-world queries require in-depth reasoning to identify relevant documents.
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.
Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data [89.2410799619405]
We introduce the Quantitative Reasoning with Data benchmark to evaluate Large Language Models' capability in statistical and causal reasoning with real-world data.
The benchmark comprises a dataset of 411 questions accompanied by data sheets from textbooks, online learning materials, and academic papers.
To compare models' quantitative reasoning abilities on data and text, we enrich the benchmark with an auxiliary set of 290 text-only questions, namely QRText.
arXiv Detail & Related papers (2024-02-27T16:15:03Z) - On Using GUI Interaction Data to Improve Text Retrieval-based Bug
Localization [10.717184444794505]
We investigate the hypothesis that, for end user-facing applications, connecting information in a bug report with information from the GUI, can improve upon existing techniques for bug localization.
We source the current largest dataset of fully-localized and reproducible real bugs for Android apps, with corresponding bug reports.
arXiv Detail & Related papers (2023-10-12T07:14:22Z) - Making Retrieval-Augmented Language Models Robust to Irrelevant Context [55.564789967211844]
An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant.
Recent work has shown that retrieval augmentation can sometimes have a negative effect on performance.
arXiv Detail & Related papers (2023-10-02T18:52:35Z) - Automatic Classification of Bug Reports Based on Multiple Text
Information and Reports' Intention [37.67372105858311]
This paper proposes a new automatic classification method for bug reports.
The innovation is that when categorizing bug reports, in addition to using the text information of the report, the intention of the report is also considered.
Our proposed method achieves better performance and its F-Measure achieves from 87.3% to 95.5%.
arXiv Detail & Related papers (2022-08-02T06:44:51Z) - The Forgotten Role of Search Queries in IR-based Bug Localization: An
Empirical Study [17.809196793565224]
This article critically examines the state-of-the-art query selection practices in IR-based bug localization.
We exploit the Genetic Algorithm-based approach to construct optimal, near-optimal search queries from 2,320 bug reports.
We demonstrate 27%--34% improvement in the performance of non-optimal queries through the application of our actionable insights.
arXiv Detail & Related papers (2021-08-11T17:37:50Z) - TACRED Revisited: A Thorough Evaluation of the TACRED Relation
Extraction Task [80.38130122127882]
TACRED is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE)
In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement?
We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled.
arXiv Detail & Related papers (2020-04-30T15:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.