Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation
- URL: http://arxiv.org/abs/2412.13952v1
- Date: Wed, 18 Dec 2024 15:32:27 GMT
- Title: Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation
- Authors: Eleni Sgouritsa, Virginia Aglietti, Yee Whye Teh, Arnaud Doucet, Arthur Gretton, Silvia Chiappa,
- Abstract summary: We focus on causal reasoning and address the task of establishing causal relationships based on correlation information.
We introduce a prompting strategy for this problem that breaks the original task into fixed subquestions.
We evaluate our approach on an existing causal benchmark, Corr2Cause.
- Score: 68.58373854950294
- License:
- Abstract: The reasoning abilities of Large Language Models (LLMs) are attracting increasing attention. In this work, we focus on causal reasoning and address the task of establishing causal relationships based on correlation information, a highly challenging problem on which several LLMs have shown poor performance. We introduce a prompting strategy for this problem that breaks the original task into fixed subquestions, with each subquestion corresponding to one step of a formal causal discovery algorithm, the PC algorithm. The proposed prompting strategy, PC-SubQ, guides the LLM to follow these algorithmic steps, by sequentially prompting it with one subquestion at a time, augmenting the next subquestion's prompt with the answer to the previous one(s). We evaluate our approach on an existing causal benchmark, Corr2Cause: our experiments indicate a performance improvement across five LLMs when comparing PC-SubQ to baseline prompting strategies. Results are robust to causal query perturbations, when modifying the variable names or paraphrasing the expressions.
Related papers
- Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Gap-Filling Prompting Enhances Code-Assisted Mathematical Reasoning [0.0]
Chain-of-thought (CoT) and program-of-thought (PoT) fine-tuning are common methods to transfer LLM knowledge to small language models (SLMs)
This paper introduces Gap-Filling Prompting (GFP), a novel two-step prompting strategy designed to enhance the problem-solving process for SLMs.
arXiv Detail & Related papers (2024-11-08T08:52:59Z) - Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
We introduce the Long Question Coreference Adaptation (LQCA) method to enhance the performance of large language models (LLMs)
This framework focuses on coreference resolution tailored to long contexts, allowing the model to identify and manage references effectively.
The framework provides easier-to-handle partitions for LLMs, promoting better understanding.
arXiv Detail & Related papers (2024-10-02T15:39:55Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Chain of Thoughtlessness? An Analysis of CoT in Planning [17.329365493094542]
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution.
This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain.
We find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class.
arXiv Detail & Related papers (2024-05-08T02:48:28Z) - RankPrompt: Step-by-Step Comparisons Make Language Models Better Reasoners [38.30539869264287]
Large Language Models (LLMs) have achieved impressive performance across various reasoning tasks.
However, even state-of-the-art LLMs such as ChatGPT are prone to logical errors during their reasoning processes.
We introduce RankPrompt, a new prompting method that enables LLMs to self-rank their responses without additional resources.
arXiv Detail & Related papers (2024-03-19T02:34:18Z) - Graph Elicitation for Guiding Multi-Step Reasoning in Large Language Models [16.432208223793666]
Chain-of-Thought prompting along with sub-question generation and answering has enhanced multi-step reasoning capabilities.
We propose a GE-Reasoning method, which directs Large Language Models to generate proper sub-questions and corresponding answers.
Our approach outperforms previous CoT prompting methods and their variants on multi-hop question answering benchmark datasets.
arXiv Detail & Related papers (2023-11-16T10:36:08Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
We propose textbftextitThought Propagation (TP) to enhance the complex reasoning ability of Large Language Models.
TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one.
TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch.
arXiv Detail & Related papers (2023-10-06T01:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.