Clifford-Deformed Compass Codes
- URL: http://arxiv.org/abs/2412.03808v1
- Date: Thu, 05 Dec 2024 02:02:42 GMT
- Title: Clifford-Deformed Compass Codes
- Authors: Julie A. Campos, Kenneth R. Brown,
- Abstract summary: We find Clifford deformations that can be applied to elongated compass codes resulting in QEC codes with improved performance under noise models.
One of the Clifford deformations we explore yields QEC codes with better thresholds and logical error rates than those of the XZZX surface code at moderate biases.
- Score: 0.49109372384514843
- License:
- Abstract: We can design efficient quantum error-correcting (QEC) codes by tailoring them to our choice of quantum architecture. Useful tools for constructing such codes include Clifford deformations and appropriate gauge fixings of compass codes. In this work, we find Clifford deformations that can be applied to elongated compass codes resulting in QEC codes with improved performance under noise models with errors biased towards dephasing commonly seen in quantum computing architectures. These Clifford deformations enhance decoder performance by introducing symmetries, while the stabilizers of compass codes can be selected to obtain more information on high-rate errors. As a result, the codes exhibit thresholds that increase with bias and display lower logical error rates. One of the Clifford deformations we explore yields QEC codes with better thresholds and logical error rates than those of the XZZX surface code at moderate biases.
Related papers
- Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Spacetime codes of Clifford circuits [0.0]
Scheme is based on the observation that the set of all possible outcome bit-strings of a Clifford circuit is a linear code.
From the outcome code we construct a corresponding stabilizer code, the spacetime code.
We give efficient algorithms to construct the outcome and spacetime codes.
arXiv Detail & Related papers (2023-04-12T16:05:44Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Decoding general error correcting codes and the role of complementarity [2.66269503676104]
We show that a decoding circuit for Calderbank-Shor-Steane (CSS) codes can be straightforwardly extended to handle general QECCs.
We demonstrate the power of the decoding circuit in a toy model of the black hole information paradox.
arXiv Detail & Related papers (2022-10-13T01:44:26Z) - Tailored XZZX codes for biased noise [60.12487959001671]
We study a family of codes having XZZX-type stabilizer generators.
We show that these XZZX codes are highly qubit efficient if tailored to biased noise.
arXiv Detail & Related papers (2022-03-30T17:26:31Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fundamental thresholds of realistic quantum error correction circuits
from classical spin models [0.0]
We use Monte-Carlo simulations to study the resulting phase diagram of the associated interacting spin model.
The presented method provides an avenue to assess the fundamental thresholds of QEC codes and associated readout circuitry, independent of specific decoding strategies.
arXiv Detail & Related papers (2021-04-10T19:26:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.