論文の概要: FedMetaMed: Federated Meta-Learning for Personalized Medication in Distributed Healthcare Systems
- arxiv url: http://arxiv.org/abs/2412.03851v1
- Date: Thu, 05 Dec 2024 03:36:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:14.024389
- Title: FedMetaMed: Federated Meta-Learning for Personalized Medication in Distributed Healthcare Systems
- Title(参考訳): FedMetaMed:分散医療システムにおける個人化医療のためのフェデレーションメタラーニング
- Authors: Jiechao Gao, Yuangang Li,
- Abstract要約: パーソナライズドメディケーションのためのフェデレーションメタラーニング(FedMetaMed)について紹介する。
FedMetaMedは、フェデレーションラーニングとメタラーニングを組み合わせて、医療システム全体にわたる多様な患者データに適応するモデルを作成する。
我々は、FedMetaMedが最先端のFL法より優れ、最先端のコホートでも優れた一般化を示すことを示す。
- 参考スコア(独自算出の注目度): 7.32609591220333
- License:
- Abstract: Personalized medication aims to tailor healthcare to individual patient characteristics. However, the heterogeneity of patient data across healthcare systems presents significant challenges to achieving accurate and effective personalized treatments. Ethical concerns further complicate the aggregation of large volumes of data from diverse institutions. Federated Learning (FL) offers a promising decentralized solution by enabling collaborative model training through the exchange of client models rather than raw data, thus preserving privacy. However, existing FL methods often suffer from retrogression during server aggregation, leading to a decline in model performance in real-world medical FL settings. To address data variability in distributed healthcare systems, we introduce Federated Meta-Learning for Personalized Medication (FedMetaMed), which combines federated learning and meta-learning to create models that adapt to diverse patient data across healthcare systems. The FedMetaMed framework aims to produce superior personalized models for individual clients by addressing these limitations. Specifically, we introduce Cumulative Fourier Aggregation (CFA) at the server to improve stability and effectiveness in global knowledge aggregation. CFA achieves this by gradually integrating client models from low to high frequencies. At the client level, we implement a Collaborative Transfer Optimization (CTO) strategy with a three-step process - Retrieve, Reciprocate, and Refine - to enhance the personalized local model through seamless global knowledge transfer. Experiments on real-world medical imaging datasets demonstrate that FedMetaMed outperforms state-of-the-art FL methods, showing superior generalization even on out-of-distribution cohorts.
- Abstract(参考訳): パーソナライズド医薬品は、個々の患者特性にヘルスケアを合わせることを目的としている。
しかし、医療システム全体にわたる患者データの異質性は、正確かつ効果的なパーソナライズされた治療を実現する上で大きな課題となる。
倫理的な懸念は、多様な機関からの大量のデータの収集をさらに複雑にする。
Federated Learning(FL)は、生データではなくクライアントモデルの交換を通じて協調的なモデルトレーニングを可能にすることによって、有望な分散ソリューションを提供する。
しかし,既存のFL法は,サーバ集約時に再帰性に悩まされることが多く,実際の医療FL設定ではモデル性能が低下する。
分散医療システムにおけるデータの多様性に対処するために,フェデレート・メタラーニング(Federated Meta-Learning for Personalized Medication, FedMetaMed)を紹介した。
FedMetaMedフレームワークは、これらの制限に対処することによって、個々のクライアントに対して優れたパーソナライズされたモデルを作成することを目的としている。
具体的には、グローバル知識集約における安定性と有効性を改善するために、サーバに累積フーリエ集約(CFA)を導入する。
CFAは、クライアントモデルを低周波数から高周波数に徐々に統合することで、これを実現します。
クライアントレベルでは、シームレスなグローバルな知識伝達を通じてパーソナライズされたローカルモデルを強化するために、3段階のプロセス – Retrieve、Reciprocate、Refine – でコラボレーティブトランスファー最適化(CTO)戦略を実装します。
実世界の医療画像データセットの実験では、FedMetaMedは最先端のFL法よりも優れており、アウト・オブ・ディストリビューション・コホートでも優れた一般化を示している。
関連論文リスト
- FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
我々は,データの不均一性に対処する新しいマルチエージェント深層強化学習フレームワークであるFedMRLを紹介する。
FedMRLは、クライアント間の公平性を促進するために、新たな損失関数を導入し、最終グローバルモデルのバイアスを防ぐ。
その結果,FedMRLが最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-08T10:10:07Z) - MH-pFLGB: Model Heterogeneous personalized Federated Learning via Global Bypass for Medical Image Analysis [14.298460846515969]
我々は,公共データセットへの依存を緩和し,非IIDデータ分散の複雑さをナビゲートするために,グローバルバイパス戦略を利用する新しいアプローチであるMH-pFLGBを導入する。
本手法は,クライアント間で情報を共有するグローバルバイパスモデルを統合することで,従来のフェデレーション学習を強化し,各クライアントの性能を高めるネットワークの一部として機能する。
論文 参考訳(メタデータ) (2024-06-29T15:38:37Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - IOP-FL: Inside-Outside Personalization for Federated Medical Image
Segmentation [18.65229252289727]
フェデレートラーニング(Federated Learning)は、複数の医療機関がクライアントデータを集中せずにグローバルなモデルを共同で学習することを可能にする。
We propose a novel unified framework for textitInside and Outside model Personalization in FL (IOP-FL)。
2つの医用画像分割作業に関する実験結果から, 内面および外面の個人化におけるSOTA法よりも有意な改善が認められた。
論文 参考訳(メタデータ) (2022-04-16T08:26:19Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
クロスサイロ・フェデレーション・ラーニング (FL) は近年, 深層学習による医用画像解析において注目されている。
FLでトレーニングされたモデルと、集中的なトレーニングでトレーニングされたモデルの間にはギャップがある。
本稿では,クライアントの問題を回避し,ドリフトギャップを解消するための新しいトレーニングフレームワークであるFedSMを提案する。
論文 参考訳(メタデータ) (2022-03-18T19:50:07Z) - Personalized Retrogress-Resilient Framework for Real-World Medical
Federated Learning [8.240098954377794]
本稿では,各クライアントに対して優れたパーソナライズモデルを生成するために,パーソナライズされた回帰耐性フレームワークを提案する。
実世界の皮膚内視鏡的FLデータセットに関する実験により、我々のパーソナライズされた回帰抵抗性フレームワークが最先端のFL手法より優れていることが証明された。
論文 参考訳(メタデータ) (2021-10-01T13:24:29Z) - Inverse Distance Aggregation for Federated Learning with Non-IID Data [48.48922416867067]
近年,フェデレートラーニング(FL)は医用画像の分野で有望なアプローチである。
FLにおける重要な問題は、特に医療シナリオにおいて、ノイズの多い分散クライアントやアウトオブディストリビューションクライアントに対して堅牢な、より正確な共有モデルを持つことである。
非平衡データと非IDデータを扱うメタ情報に基づく新しい適応重み付け手法であるIDAを提案する。
論文 参考訳(メタデータ) (2020-08-17T23:20:01Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。