CLIP-PING: Boosting Lightweight Vision-Language Models with Proximus Intrinsic Neighbors Guidance
- URL: http://arxiv.org/abs/2412.03871v1
- Date: Thu, 05 Dec 2024 04:58:28 GMT
- Title: CLIP-PING: Boosting Lightweight Vision-Language Models with Proximus Intrinsic Neighbors Guidance
- Authors: Chu Myaet Thwal, Ye Lin Tun, Minh N. H. Nguyen, Eui-Nam Huh, Choong Seon Hong,
- Abstract summary: We propose CLIP-PING: Contrastive Language-Image Pre-training with Proximus Intrinsic Neighbors Guidance.
CLIP-PING bootstraps unimodal features extracted from arbitrary pre-trained encoders to obtain intrinsic guidance of proximus neighbors.
Experiments reveal that CLIP-PING notably surpasses its peers in zero-shot generalization and cross-modal retrieval tasks.
- Score: 14.849943391904882
- License:
- Abstract: Beyond the success of Contrastive Language-Image Pre-training (CLIP), recent trends mark a shift toward exploring the applicability of lightweight vision-language models for resource-constrained scenarios. These models often deliver suboptimal performance when relying solely on a single image-text contrastive learning objective, spotlighting the need for more effective training mechanisms that guarantee robust cross-modal feature alignment. In this work, we propose CLIP-PING: Contrastive Language-Image Pre-training with Proximus Intrinsic Neighbors Guidance, a simple and efficient training paradigm designed to boost the performance of lightweight vision-language models with minimal computational overhead and lower data demands. CLIP-PING bootstraps unimodal features extracted from arbitrary pre-trained encoders to obtain intrinsic guidance of proximus neighbor samples, i.e., nearest-neighbor (NN) and cross nearest-neighbor (XNN). We find that extra contrastive supervision from these neighbors substantially boosts cross-modal alignment, enabling lightweight models to learn more generic features with rich semantic diversity. Extensive experiments reveal that CLIP-PING notably surpasses its peers in zero-shot generalization and cross-modal retrieval tasks. Specifically, a 5.5% gain on zero-shot ImageNet1K with 10.7% (I2T) and 5.7% (T2I) on Flickr30K, compared to the original CLIP when using ViT-XS image encoder trained on 3 million (image, text) pairs. Moreover, CLIP-PING showcases strong transferability under the linear evaluation protocol across several downstream tasks.
Related papers
- Fine-Tuning CLIP's Last Visual Projector: A Few-Shot Cornucopia [45.93202559299953]
This paper introduces an alternative way for CLIP adaptation without adding 'external' parameters to optimize.
We find that simply fine-tuning the last projection matrix of the vision leads to performance better than all baselines.
This simple approach, coined ProLIP, yields state-of-the-art performance on 11 few-shot classification benchmarks.
arXiv Detail & Related papers (2024-10-07T17:59:59Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
Humans possess remarkable ability to accurately classify new, unseen images after being exposed to only a few examples.
For artificial neural network models, determining the most relevant features for distinguishing between two images with limited samples presents a challenge.
We propose an intra-task mutual attention method for few-shot learning, that involves splitting the support and query samples into patches.
arXiv Detail & Related papers (2024-05-06T02:02:57Z) - Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification [54.96876797812238]
We present a novel CrOss-moDal nEighbor Representation(CODER) based on the distance structure between images and their neighbor texts.
The key to construct a high-quality CODER lies in how to create a vast amount of high-quality and diverse texts to match with images.
Experiment results across various datasets and models confirm CODER's effectiveness.
arXiv Detail & Related papers (2024-04-27T02:04:36Z) - CLIP meets Model Zoo Experts: Pseudo-Supervision for Visual Enhancement [65.47237619200442]
Contrastive language image pretraining (CLIP) is a standard method for training vision-language models.
We augment CLIP training with task-specific vision models from model zoos to improve its visual representations.
This simple setup shows substantial improvements of up to 16.3% across different vision tasks.
arXiv Detail & Related papers (2023-10-21T20:20:13Z) - UniBoost: Unsupervised Unimodal Pre-training for Boosting Zero-shot
Vision-Language Tasks [60.46473247205654]
Using large-scale unsupervised unimodal models as pre-training can enhance the zero-shot performance of image-text pair models.
Our experiments show that unimodal pre-training outperforms state-of-the-art CLIP-based models.
arXiv Detail & Related papers (2023-06-07T18:26:22Z) - Adapting Contrastive Language-Image Pretrained (CLIP) Models for
Out-of-Distribution Detection [1.597617022056624]
We present a comprehensive experimental study on pretrained feature extractors for visual out-of-distribution (OOD) detection.
We propose a new simple and scalable method called textitpseudo-label probing (PLP) that adapts vision-language models for OOD detection.
arXiv Detail & Related papers (2023-03-10T10:02:18Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - Supervision Exists Everywhere: A Data Efficient Contrastive
Language-Image Pre-training Paradigm [109.0573737034428]
Large-scale Contrastive Language-Image Pre-training (CLIP) has attracted unprecedented attention for its impressive zero-shot recognition ability and excellent transferability to downstream tasks.
This work proposes a novel training paradigm, Data efficient CLIP (DeCLIP) to alleviate this limitation.
We demonstrate that by carefully utilizing the widespread supervision among the image-text pairs, our De-CLIP can learn generic visual features more efficiently.
arXiv Detail & Related papers (2021-10-11T12:17:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.