論文の概要: A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications
- arxiv url: http://arxiv.org/abs/2412.03884v1
- Date: Thu, 05 Dec 2024 05:30:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:12.472061
- Title: A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications
- Title(参考訳): 実世界の応用における説明可能なAI手法の有効性評価と透明性向上のための統一フレームワーク
- Authors: Md. Ariful Islam, M. F. Mridha, Md Abrar Jahin, Nilanjan Dey,
- Abstract要約: AIモデルの特徴である"ブラックボックス"は、解釈可能性、透明性、信頼性を制約する。
本研究では,AIモデルによる説明の正確性,解釈可能性,堅牢性,公正性,完全性を評価するための統合XAI評価フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.0681376988193843
- License:
- Abstract: The rapid advancement of deep learning has resulted in substantial advancements in AI-driven applications; however, the "black box" characteristic of these models frequently constrains their interpretability, transparency, and reliability. Explainable artificial intelligence (XAI) seeks to elucidate AI decision-making processes, guaranteeing that explanations faithfully represent the model's rationale and correspond with human comprehension. Despite comprehensive research in XAI, a significant gap persists in standardized procedures for assessing the efficacy and transparency of XAI techniques across many real-world applications. This study presents a unified XAI evaluation framework incorporating extensive quantitative and qualitative criteria to systematically evaluate the correctness, interpretability, robustness, fairness, and completeness of explanations generated by AI models. The framework prioritizes user-centric and domain-specific adaptations, hence improving the usability and reliability of AI models in essential domains. To address deficiencies in existing evaluation processes, we suggest defined benchmarks and a systematic evaluation pipeline that includes data loading, explanation development, and thorough method assessment. The suggested framework's relevance and variety are evidenced by case studies in healthcare, finance, agriculture, and autonomous systems. These provide a solid basis for the equitable and dependable assessment of XAI methodologies. This paradigm enhances XAI research by offering a systematic, flexible, and pragmatic method to guarantee transparency and accountability in AI systems across many real-world contexts.
- Abstract(参考訳): ディープラーニングの急速な進歩は、AI駆動型アプリケーションに大きな進歩をもたらしたが、これらのモデルの特徴である「ブラックボックス」は、その解釈可能性、透明性、信頼性をしばしば制限している。
説明可能な人工知能(XAI)は、AIの意思決定プロセスを解明し、説明がモデルの理論的根拠を忠実に表現し、人間の理解に対応することを保証する。
XAIにおける包括的な研究にもかかわらず、多くの現実世界のアプリケーションにおけるXAI技術の有効性と透明性を評価するための標準化手続きにおいて、大きなギャップが続いている。
本研究では,AIモデルによる説明の正確性,解釈可能性,堅牢性,公正性,完全性を体系的に評価するために,広範囲な量的および質的基準を取り入れた統一XAI評価フレームワークを提案する。
このフレームワークは、ユーザー中心およびドメイン固有の適応を優先し、それによって、必須ドメインにおけるAIモデルのユーザビリティと信頼性が向上する。
既存の評価プロセスの欠陥に対処するために,データ読み込み,説明開発,徹底的な手法評価を含む,定義されたベンチマークと体系的な評価パイプラインを提案する。
提案された枠組みの妥当性と多様性は、医療、金融、農業、自律システムのケーススタディによって証明されている。
これらは、XAI方法論の公平で信頼性の高い評価の基礎となる。
このパラダイムは、多くの現実世界のコンテキストにわたるAIシステムの透明性と説明責任を保証するために、体系的で柔軟で実践的な方法を提供することで、XAI研究を強化する。
関連論文リスト
- Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction [5.417632175667161]
説明可能な人工知能(XAI)は、これらのモデルがどのように意思決定や予測を行うかを説明することによって、課題に対処する。
既存の研究では、XAIの基本概念、その一般的原理、およびXAI技術の範囲について検討されている。
本稿では、共通用語と定義、XAIの必要性、XAIの受益者の必要性、XAI手法の分類、および異なる応用分野におけるXAI手法の適用に関する総合的な文献レビューを提供する。
論文 参考訳(メタデータ) (2024-08-30T21:42:17Z) - SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals [0.0]
本稿では,新たな評価手法であるSCENE(Soft Counterfactual Evaluation for Natural Language Explainability)を紹介する。
トークンベースの置換に焦点を当てることで、SCENEは文脈的に適切で意味論的に意味のあるソフトカウンタブルを作成する。
SCENEは様々なXAI技法の強みと限界についての貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-08-08T16:36:24Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
人工知能に基づく意思決定のサポートは、将来の6Gネットワークの重要な要素である。
このようなアプリケーションでは、ブラックボックスモデルとしてAIを使用するのは危険で難しい。
本稿では,無線通信におけるチャネル推定を目的とした新しいXAI-CHESTフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T16:24:21Z) - A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods [0.0]
機械学習とディープラーニングは、財務予測や予測タスクでますます普及している。
これらのモデルは透明性と解釈可能性に欠けることが多く、金融のような繊細なドメインでの使用を困難にしている。
本稿では、金融のためのAIベースのシステムに説明可能性を展開するための優れた実践について考察する。
論文 参考訳(メタデータ) (2023-11-13T17:56:45Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
本稿では、REXと呼ばれるAIエージェントのための高速探索およびeXploitationのための改良されたアプローチを提案する。
REXは追加の報酬層を導入し、アッパー信頼境界(UCB)スコアに似た概念を統合し、より堅牢で効率的なAIエージェントのパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-07-18T04:26:33Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Why model why? Assessing the strengths and limitations of LIME [0.0]
本稿では,LIME(Local Interpretable Model-Agnostic Explanations) xAIフレームワークの有効性について検討する。
LIMEは、文献で見られる最も人気のあるモデルに依存しないフレームワークの1つである。
従来の性能評価手法を補うためにLIMEをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2020-11-30T21:08:07Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。