論文の概要: A Survey on Human-Centered Evaluation of Explainable AI Methods in Clinical Decision Support Systems
- arxiv url: http://arxiv.org/abs/2502.09849v1
- Date: Fri, 14 Feb 2025 01:21:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 18:06:36.566853
- Title: A Survey on Human-Centered Evaluation of Explainable AI Methods in Clinical Decision Support Systems
- Title(参考訳): 臨床診断支援システムにおける説明可能なAI手法の人間中心評価に関する調査
- Authors: Alessandro Gambetti, Qiwei Han, Hong Shen, Claudia Soares,
- Abstract要約: 本稿では,臨床診断支援システムにおける説明可能なAI手法の人間中心評価について調査する。
本研究は、XAIの医療への統合における重要な課題を明らかにし、XAIの評価方法と利害関係者の臨床的ニーズを整合させる構造的枠組みを提案する。
- 参考スコア(独自算出の注目度): 45.89954090414204
- License:
- Abstract: Explainable AI (XAI) has become a crucial component of Clinical Decision Support Systems (CDSS) to enhance transparency, trust, and clinical adoption. However, while many XAI methods have been proposed, their effectiveness in real-world medical settings remains underexplored. This paper provides a survey of human-centered evaluations of Explainable AI methods in Clinical Decision Support Systems. By categorizing existing works based on XAI methodologies, evaluation frameworks, and clinical adoption challenges, we offer a structured understanding of the landscape. Our findings reveal key challenges in the integration of XAI into healthcare workflows and propose a structured framework to align the evaluation methods of XAI with the clinical needs of stakeholders.
- Abstract(参考訳): 説明可能なAI(XAI)は、透明性、信頼、臨床導入を促進するために、臨床決定支援システム(CDSS)の重要な構成要素となっている。
しかし,多くのXAI手法が提案されているが,実際の医療環境におけるXAIの有効性は未解明のままである。
本稿では,臨床診断支援システムにおける説明可能なAI手法の人間中心評価について調査する。
XAI手法, 評価フレームワーク, 臨床応用課題に基づく既存の研究を分類することにより, 景観の構造化された理解を提供する。
本研究は、XAIを医療ワークフローに統合する上で重要な課題を明らかにし、XAIの評価方法と利害関係者の臨床的ニーズを整合させる構造的枠組みを提案する。
関連論文リスト
- A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
AIモデルの特徴である"ブラックボックス"は、解釈可能性、透明性、信頼性を制約する。
本研究では,AIモデルによる説明の正確性,解釈可能性,堅牢性,公正性,完全性を評価するための統合XAI評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-05T05:30:10Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - Elucidating Discrepancy in Explanations of Predictive Models Developed
using EMR [2.1561701531034414]
透明性と説明責任の欠如は、機械学習(ML)アルゴリズムの臨床的採用を妨げる。
本研究は電子カルテ(EMR)データのために開発された臨床診断支援アルゴリズムに適用する。
論文 参考訳(メタデータ) (2023-11-28T10:13:31Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Exploring the Role of Explainability in AI-Assisted Embryo Selection [0.0]
体外受精は不妊治療において最も広く行われている治療法の一つである。
その主な課題の1つは、移植のための胚の評価と選択である。
深層学習に基づく手法が注目されているが、その不透明な性質は臨床における受容を損なう。
論文 参考訳(メタデータ) (2023-08-01T09:46:31Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Evaluation of Popular XAI Applied to Clinical Prediction Models: Can
They be Trusted? [2.0089256058364358]
透明性と説明可能性の欠如は、機械学習(ML)アルゴリズムの臨床的採用を妨げる。
本研究は、医療現場における予測モデルの説明に使用される2つの一般的なXAI手法を評価する。
論文 参考訳(メタデータ) (2023-06-21T02:29:30Z) - Explainable Artificial Intelligence Methods in Combating Pandemics: A
Systematic Review [7.140215556873923]
新型コロナウイルス(COVID-19)パンデミックにおける人工知能の影響は、モデルの透明性の欠如によって大幅に制限された。
XAIをうまく利用すれば、モデルの性能を改善し、エンドユーザに信頼を与え、ユーザの意思決定に影響を与えるのに必要な価値を提供することができる。
論文 参考訳(メタデータ) (2021-12-23T16:55:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。