DGNS: Deformable Gaussian Splatting and Dynamic Neural Surface for Monocular Dynamic 3D Reconstruction
- URL: http://arxiv.org/abs/2412.03910v2
- Date: Mon, 23 Dec 2024 04:04:39 GMT
- Title: DGNS: Deformable Gaussian Splatting and Dynamic Neural Surface for Monocular Dynamic 3D Reconstruction
- Authors: Xuesong Li, Jinguang Tong, Jie Hong, Vivien Rolland, Lars Petersson,
- Abstract summary: This paper tackles the dual challenges of dynamic novel-view synthesis and 3D reconstruction.
We introduce a hybrid framework: Deformable Gaussian splatting and Dynamic Neural Surfaces.
- Score: 17.2650972298677
- License:
- Abstract: Dynamic scene reconstruction from monocular video is critical for real-world applications. This paper tackles the dual challenges of dynamic novel-view synthesis and 3D geometry reconstruction by introducing a hybrid framework: Deformable Gaussian Splatting and Dynamic Neural Surfaces (DGNS), in which both modules can leverage each other for both tasks. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Simultaneously, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. To further refine depth supervision, we introduce a depth-filtering process on depth maps derived from Gaussian rasterization. Extensive experiments on public datasets demonstrate that DGNS achieves state-of-the-art performance in both novel-view synthesis and 3D reconstruction.
Related papers
- 2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction [3.8879997968084137]
We introduce 2DGS-Room, a novel method leveraging 2D Gaussian Splatting for high-fidelity indoor scene reconstruction.
We employ a seed-guided mechanism to control the distribution of 2D Gaussians, with the density of seed points dynamically optimized through adaptive growth and pruning mechanisms.
To further improve geometric accuracy, we incorporate monocular depth and normal priors to provide constraints for details and textureless regions respectively.
arXiv Detail & Related papers (2024-12-04T16:17:47Z) - GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction [79.42244344704154]
GausSurf employs geometry guidance from multi-view consistency in texture-rich areas and normal priors in texture-less areas of a scene.
Our method surpasses state-of-the-art methods in terms of reconstruction quality and computation time.
arXiv Detail & Related papers (2024-11-29T03:54:54Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - Space-time 2D Gaussian Splatting for Accurate Surface Reconstruction under Complex Dynamic Scenes [30.32214593068206]
We present a space-time 2D Gaussian Splatting approach to tackle the dynamic contents and the occlusions in complex scenes.
Specifically, to improve geometric quality in dynamic scenes, we learn canonical 2D Gaussian splats and deform these 2D Gaussian splats.
We also introduce a compositional opacity strategy, which further reduces the surface recovery of those occluded areas.
Experiments on real-world sparse-view video datasets and monocular dynamic datasets demonstrate that our reconstructions outperform state-of-the-art methods.
arXiv Detail & Related papers (2024-09-27T15:50:36Z) - DynaSurfGS: Dynamic Surface Reconstruction with Planar-based Gaussian Splatting [13.762831851385227]
We propose DynaSurfGS to achieve both photorealistic rendering and high-fidelity surface reconstruction of dynamic scenarios.
The framework first incorporates Gaussian features from 4D neural voxels with the planar-based Gaussian Splatting to facilitate precise surface reconstruction.
It also incorporates the as-rigid-as-possible (ARAP) constraint to maintain the approximate rigidity of local neighborhoods of 3D Gaussians between timesteps.
arXiv Detail & Related papers (2024-08-26T01:36:46Z) - SMORE: Simulataneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.
We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - DynamicSurf: Dynamic Neural RGB-D Surface Reconstruction with an
Optimizable Feature Grid [7.702806654565181]
DynamicSurf is a model-free neural implicit surface reconstruction method for high-fidelity 3D modelling of non-rigid surfaces from monocular RGB-D video.
We learn a neural deformation field that maps a canonical representation of the surface geometry to the current frame.
We demonstrate it can optimize sequences of varying frames with $6$ speedup over pure-based approaches.
arXiv Detail & Related papers (2023-11-14T13:39:01Z) - Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D
Camera [26.410460029742456]
We propose a template-free method to recover high-fidelity geometry and motions of a dynamic scene from a monocular RGB-D camera.
Experiments on public datasets and our collected dataset demonstrate that NDR outperforms existing monocular dynamic reconstruction methods.
arXiv Detail & Related papers (2022-06-30T13:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.