論文の概要: Traffic Co-Simulation Framework Empowered by Infrastructure Camera Sensing and Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.03925v1
- Date: Thu, 05 Dec 2024 07:01:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:01.719429
- Title: Traffic Co-Simulation Framework Empowered by Infrastructure Camera Sensing and Reinforcement Learning
- Title(参考訳): インフラカメラセンシングと強化学習を活用した交通共シミュレーションフレームワーク
- Authors: Talha Azfar, Ruimin Ke,
- Abstract要約: マルチエージェント強化学習(MARL)は、反復シミュレーションを用いて、ネットワーク内の信号機の制御戦略の学習に特に有効である。
本研究では,高忠実度3次元モデリングと大規模交通流シミュレーションを組み合わせたCARLAとSUMOを統合したシミュレーションフレームワークを提案する。
テストベッドでの実験では、リアルタイムカメラを用いた交通状況検出におけるMARLアプローチの有効性が実証された。
- 参考スコア(独自算出の注目度): 4.336971448707467
- License:
- Abstract: Traffic simulations are commonly used to optimize traffic flow, with reinforcement learning (RL) showing promising potential for automated traffic signal control. Multi-agent reinforcement learning (MARL) is particularly effective for learning control strategies for traffic lights in a network using iterative simulations. However, existing methods often assume perfect vehicle detection, which overlooks real-world limitations related to infrastructure availability and sensor reliability. This study proposes a co-simulation framework integrating CARLA and SUMO, which combines high-fidelity 3D modeling with large-scale traffic flow simulation. Cameras mounted on traffic light poles within the CARLA environment use a YOLO-based computer vision system to detect and count vehicles, providing real-time traffic data as input for adaptive signal control in SUMO. MARL agents, trained with four different reward structures, leverage this visual feedback to optimize signal timings and improve network-wide traffic flow. Experiments in the test-bed demonstrate the effectiveness of the proposed MARL approach in enhancing traffic conditions using real-time camera-based detection. The framework also evaluates the robustness of MARL under faulty or sparse sensing and compares the performance of YOLOv5 and YOLOv8 for vehicle detection. Results show that while better accuracy improves performance, MARL agents can still achieve significant improvements with imperfect detection, demonstrating adaptability for real-world scenarios.
- Abstract(参考訳): 交通シミュレーションは交通流の最適化に一般的に用いられ、強化学習(RL)は自動信号制御の有望な可能性を示している。
マルチエージェント強化学習(MARL)は、反復シミュレーションを用いて、ネットワーク内の信号機の制御戦略の学習に特に有効である。
しかし、既存の手法では、インフラの可用性とセンサーの信頼性に関する現実的な制限を無視する、完璧な車両検出を前提としていることが多い。
本研究では,高忠実度3次元モデリングと大規模交通流シミュレーションを組み合わせたCARLAとSUMOを統合したシミュレーションフレームワークを提案する。
CARLA環境内の信号柱に搭載されたカメラは、YOLOベースのコンピュータビジョンシステムを使用して車両を検出し、カウントし、SUMOの適応信号制御のための入力としてリアルタイムの交通データを提供する。
4つの異なる報酬構造で訓練されたMARLエージェントは、この視覚フィードバックを利用して信号タイミングを最適化し、ネットワーク全体のトラフィックフローを改善する。
テストベッドでの実験では,リアルタイムカメラを用いた交通状況検出におけるMARLアプローチの有効性が実証された。
このフレームワークはまた、MARLの欠陥またはスパースセンシング時の堅牢性を評価し、車両検出のためのYOLOv5とYOLOv8の性能を比較する。
その結果、MARLエージェントは精度が向上する一方で、不完全検出による大幅な改善を実現し、現実のシナリオへの適応性を実証できることがわかった。
関連論文リスト
- Leveraging Multimodal-LLMs Assisted by Instance Segmentation for Intelligent Traffic Monitoring [6.648291808015463]
本研究では,リアルタイムQuanser Interactive Labシミュレーションプラットフォーム上でのトラフィック監視作業にLLaVAビジュアルグラウンド・マルチモーダル大言語モデル(LLM)を利用する。
複数の都市に設置されたカメラはシミュレーションからリアルタイムの画像を収集し、LLaVAモデルに入力して分析を行う。
このシステムは、車両の位置を認識する精度が84.3%、ステアリング方向が76.4%で、従来のモデルを上回っている。
論文 参考訳(メタデータ) (2025-02-16T23:03:26Z) - Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
トラフィックデータの複雑な空間的および時間的依存関係をキャプチャするために,時空間生成適応ネットワーク(STGAN)フレームワークを用いる。
スウェーデンのヨーテボリで2020年に収集された42台の交通カメラから、STGANをリアルタイムで分単位でリアルタイムで観測する。
その結果, 精度が高く, 偽陽性率の低い交通異常を効果的に検出できることが示唆された。
論文 参考訳(メタデータ) (2025-02-03T14:23:23Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - Cross-domain Few-shot In-context Learning for Enhancing Traffic Sign Recognition [49.20086587208214]
交通信号認識の強化を目的としたMLLMに基づくドメイン間数ショットインコンテキスト学習手法を提案する。
記述テキストを使用することで、テンプレートと実際の交通標識のドメイン間差を低減することができる。
提案手法は,大規模交通標識画像やラベルを必要とせず,単純かつ均一なテキスト表示のみを必要とする。
論文 参考訳(メタデータ) (2024-07-08T10:51:03Z) - Traffic control using intelligent timing of traffic lights with reinforcement learning technique and real-time processing of surveillance camera images [0.0]
信号機の最適タイミングを判定し、複数のパラメータに従って適用する。
YOLOv9-Cモデルを用いた車両検出には深層学習法が用いられた。
イランの車の画像にトランスファーラーニングとモデルの再訓練を併用することで、モデルの精度が向上した。
論文 参考訳(メタデータ) (2024-05-22T00:04:32Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal
Control [5.219291917441908]
本稿では,交通信号制御のためのモデルベースメタ強化学習フレームワーク(ModelLight)を提案する。
ModelLight内では、道路交差点のためのモデルのアンサンブルと最適化に基づくメタラーニング法を用いて、RLベースのトラヒックライト制御方式のデータ効率を改善する。
実世界のデータセットの実験では、ModelLightが最先端のトラヒックライト制御アルゴリズムより優れていることが示されている。
論文 参考訳(メタデータ) (2021-11-15T20:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。