Utilizing redundancies in Qubit Hilbert Space to reduce entangling gate counts in the Unitary Vibrational Coupled-Cluster Method
- URL: http://arxiv.org/abs/2412.03955v1
- Date: Thu, 05 Dec 2024 08:07:31 GMT
- Title: Utilizing redundancies in Qubit Hilbert Space to reduce entangling gate counts in the Unitary Vibrational Coupled-Cluster Method
- Authors: Michal Szczepanik, Emil Zak,
- Abstract summary: We present a new method for state preparation using the Unitary Vibrational Coupled-Cluster technique.<n>By eliminating half of the qubit controls required in the Trotterized UVCC ansatz, our method achieves up to a 50% theoretical reduction in the entangling gate count.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new method for state preparation using the Unitary Vibrational Coupled-Cluster (UVCC) technique. Our approach utilizes redundancies in the Hilbert space in the direct mapping of vibrational modes into qubits. By eliminating half of the qubit controls required in the Trotterized UVCC ansatz, our method achieves up to a 50% theoretical reduction in the entangling gate count compared to other methods and up to a 28% reduction compared practically useful approaches. This improvement enhances the fidelity of UVCC state preparation, enabling more efficient and earlier implementation of complex quantum vibrational structure calculations on near-term quantum devices. We experimentally demonstrate our method on Quantinuum's H1-1 quantum hardware, achieving significantly higher fidelities for 6- and 8-qubit systems compared to existing implementations. For fault-tolerant architectures, eliminating half of the control qubits in multi-controlled rotations incurs an additional Toffoli gate overhead elsewhere in the circuit. Thus, the overall performance gain depends on the specific decomposition method used for multi-controlled gates.
Related papers
- Scalable and Site-Specific Frequency Tuning of Two-Level System Defects in Superconducting Qubit Arrays [0.0]
We introduce a scalable architecture for site-specific and in-situ manipulation of quantum two-level system defects.
Our method is resource efficient, combining TLS frequency tuning and universal single qubit control into a single on-chip control line per qubit.
We demonstrate a $36%$ improvement in average single qubit error rates and a $17%$ improvement in average energy relaxation times.
arXiv Detail & Related papers (2025-03-06T18:49:46Z) - Universal pulses for superconducting qudit ladder gates [0.0]
We present a universal pulse construction for generating rapid, high-fidelity unitary rotations between adjacent qudit levels.
We derive concise analytical pulse schemes that suppress multiple control errors and outperform existing methods.
arXiv Detail & Related papers (2024-12-24T10:54:05Z) - Gradient projection method for constrained quantum control [50.24983453990065]
We adopt the Gradient Projection Method (GPM) to problems of quantum control.<n>The main advantage of the method is that it allows to exactly satisfy the bounds.<n>We apply the GPM to several examples including generation of one- and two-qubit gates and two-qubit Bell and Werner states.
arXiv Detail & Related papers (2024-11-29T11:56:55Z) - Realizing Scalable Conditional Operations through Auxiliary Energy Levels [12.939689760182203]
We propose a transition composite gate scheme based on transition pathway engineering.
We demonstrate the controlled-unitary (CU) family and its applications.
arXiv Detail & Related papers (2024-07-09T09:01:04Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Hamiltonian Switching Control of Noisy Bipartite Qubit Systems [7.094462708097975]
We develop a Hamiltonian switching ansatz for bipartite control inspired by the Quantum Approximate Optimization Algorithm (QAOA)
We demonstrate effective suppression of both coherent and dissipative noise, with numerical studies achieving target gate implementations with fidelities over 0.9999 (four nines)
We analyze how the control depth, total evolution time, number of environmental TLS, and choice of optimization method affect the fidelity achieved by the optimal protocols.
arXiv Detail & Related papers (2023-04-11T20:12:57Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Experimental error suppression in Cross-Resonance gates via multi-derivative pulse shaping [0.0]
Cloud computing gates on multi-qubit, fixed-frequency superconducting chips continue to hover around the 1% error range.
Despite the strong impetus and a plethora of research, experimental demonstration of error suppression on these multi-qubit devices remains challenging.
Here, we achieve this goal, using a simple control method based on multi-derivative, multi-constraint pulse shaping.
arXiv Detail & Related papers (2023-03-02T17:30:17Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Fast and Robust Geometric Two-Qubit Gates for Superconducting Qubits and
beyond [0.0]
We propose a scheme to realize robust geometric two-qubit gates in multi-level qubit systems.
Our scheme is substantially simpler than STIRAP-based gates that have been proposed for atomic platforms.
We show how our gate can be accelerated using a shortcuts-to-adiabaticity approach.
arXiv Detail & Related papers (2022-08-08T16:22:24Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.