Scalable and Site-Specific Frequency Tuning of Two-Level System Defects in Superconducting Qubit Arrays
- URL: http://arxiv.org/abs/2503.04702v1
- Date: Thu, 06 Mar 2025 18:49:46 GMT
- Title: Scalable and Site-Specific Frequency Tuning of Two-Level System Defects in Superconducting Qubit Arrays
- Authors: Larry Chen, Kan-Heng Lee, Chuan-Hong Liu, Brian Marinelli, Ravi K. Naik, Ziqi Kang, Noah Goss, Hyunseong Kim, David I. Santiago, Irfan Siddiqi,
- Abstract summary: We introduce a scalable architecture for site-specific and in-situ manipulation of quantum two-level system defects.<n>Our method is resource efficient, combining TLS frequency tuning and universal single qubit control into a single on-chip control line per qubit.<n>We demonstrate a $36%$ improvement in average single qubit error rates and a $17%$ improvement in average energy relaxation times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art superconducting quantum processors containing tens to hundreds of qubits have demonstrated the building blocks for realizing fault-tolerant quantum computation. Nonetheless, a fundamental barrier to scaling further is the prevalence of fluctuating quantum two-level system (TLS) defects that can couple resonantly to qubits, causing excess decoherence and enhanced gate errors. Here we introduce a scalable architecture for site-specific and in-situ manipulation of TLS frequencies out of the spectral vicinity of our qubits. Our method is resource efficient, combining TLS frequency tuning and universal single qubit control into a single on-chip control line per qubit. We independently control each qubit's dissipative environment to dynamically improve both qubit coherence times and single qubit gate fidelities -- with a constant time overhead that does not scale with the device size. Over a period of 40 hours across 6 qubits, we demonstrate a $36\%$ improvement in average single qubit error rates and a $17\%$ improvement in average energy relaxation times. Critically, we realize a 4-fold suppression in the occurrence of TLS-induced performance outliers, and a complete reduction of simultaneous outlier events. These results mark a significant step toward overcoming the challenges that TLS defects pose to scaling superconducting quantum processors.
Related papers
- Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.
We present a design for a multi-chip module comprising one carrier chip and four qubit modules.
Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.
We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - Utilizing redundancies in Qubit Hilbert Space to reduce entangling gate counts in the Unitary Vibrational Coupled-Cluster Method [0.0]
We present a new method for state preparation using the Unitary Vibrational Coupled-Cluster technique.
By eliminating half of the qubit controls required in the Trotterized UVCC ansatz, our method achieves up to a 50% theoretical reduction in the entangling gate count.
arXiv Detail & Related papers (2024-12-05T08:07:31Z) - Parametric multi-element coupling architecture for coherent and
dissipative control of superconducting qubits [0.0]
We present a superconducting qubit architecture based on tunable parametric interactions to perform two-qubit gates, reset, leakage recovery and to read out the qubits.
We experimentally demonstrate a controlled-Z gate with a fidelity of $98.30pm 0.23 %$, a reset operation that unconditionally prepares the qubit ground state with a fidelity of $99.80pm 0.02 %$ and a leakage recovery operation with a $98.5pm 0.3 %$ success probability.
arXiv Detail & Related papers (2024-03-04T16:49:36Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Mitigation of frequency collisions in superconducting quantum processors [0.5949967357689445]
Signal crosstalk imposes constraints on the frequency separation between neighboring qubits.
We characterize 32 identical transmon qubits and demonstrate the frequencies of the qubit with a 40 MHz standard deviation.
We can scale up to 100 qubits with an average of only 3 collisions between quantum-gate transition frequencies.
arXiv Detail & Related papers (2023-03-08T15:32:49Z) - Overcoming I/O bottleneck in superconducting quantum computing:
multiplexed qubit control with ultra-low-power, base-temperature cryo-CMOS
multiplexer [40.37334699475035]
Large-scale superconducting quantum computing systems entail high-fidelity control and readout of qubits at millikelvin temperatures.
Cryo-electronics may offer a scalable and versatile solution to overcome this bottleneck.
Here we present an ultra-low power radio-frequency (RF) multiplexing cryo-electronics solution operating below 15 mK.
arXiv Detail & Related papers (2022-09-26T22:38:09Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Scalable High-Performance Fluxonium Quantum Processor [0.0]
We propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk.
We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz.
arXiv Detail & Related papers (2022-01-23T21:49:04Z) - Stabilization of Qubit Relaxation Rates by Frequency Modulation [68.8204255655161]
Temporal, spectral, and sample-to-sample fluctuations in coherence properties of qubits form an outstanding challenge for the development of upscaled fault-tolerant quantum computers.
A ubiquitous source for these fluctuations in superconducting qubits is a set of atomic-scale defects with a two-level structure.
We show that frequency modulation of a qubit or, alternatively, of the two-level defects, leads to averaging of the qubit relaxation rate over a wide interval of frequencies.
arXiv Detail & Related papers (2021-04-08T11:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.