Realizing Scalable Conditional Operations through Auxiliary Energy Levels
- URL: http://arxiv.org/abs/2407.06687v3
- Date: Tue, 15 Apr 2025 13:48:49 GMT
- Title: Realizing Scalable Conditional Operations through Auxiliary Energy Levels
- Authors: Sheng Zhang, Peng Duan, Yun-Jie Wang, Tian-Le Wang, Peng Wang, Ren-Ze Zhao, Xiao-Yan Yang, Ze-An Zhao, Liang-Liang Guo, Yong Chen, Hai-Feng Zhang, Lei Du, Hao-Ran Tao, Zhi-Fei Li, Yuan Wu, Zhi-Long Jia, Wei-Cheng Kong, Zhao-Yun Chen, Zhuo-Zhi Zhang, Xiang-Xiang Song, Yu-Chun Wu, Guo-Ping Guo,
- Abstract summary: We propose a transition composite gate scheme based on transition pathway engineering.<n>We demonstrate the controlled-unitary (CU) family and its applications.
- Score: 12.939689760182203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the noisy intermediate-scale quantum (NISQ) era, flexible quantum operations are essential for advancing large-scale quantum computing, as they enable shorter circuits that mitigate decoherence and reduce gate errors. However, the complex control of quantum interactions poses significant experimental challenges that limit scalability. Here, we propose a transition composite gate scheme based on transition pathway engineering, which digitally implements conditional operations with reduced complexity by leveraging auxiliary energy levels. Experimentally, we demonstrate the controlled-unitary (CU) family and its applications. In entangled state preparation, our CU gate reduces the circuit depth for three-qubit Greenberger-Horne-Zeilinger (GHZ) and W states by approximately 40-44% compared to circuits using only CZ gates, leading to fidelity improvements of 1.5% and 4.2%, respectively. Furthermore, with a 72% reduction in circuit depth, we successfully implement a quantum comparator-a fundamental building block for quantum algorithms requiring conditional logic, which has remained experimentally challenging due to its inherent circuit complexity. These results demonstrate the scalability and practicality of our scheme, laying a solid foundation for the implementation of large-scale quantum algorithms in future quantum processors.
Related papers
- Efficient Quantum Circuit Compilation for Near-Term Quantum Advantage [17.38734393793605]
We propose an approximate method for compiling target quantum circuits into brick-wall layouts.
This new circuit design consists of two-qubit CNOT gates that can be directly implemented on real quantum computers.
arXiv Detail & Related papers (2025-01-13T15:04:39Z) - Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
arXiv Detail & Related papers (2024-08-01T13:07:13Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
We propose PQComb to harness the full potential of quantum combs for diverse quantum process transformation tasks.
We present two streamlined protocols for the time-reversal simulation of unknown qubit unitary evolutions.
We also extend PQComb to solve the problems of qutrit unitary transformation and channel discrimination.
arXiv Detail & Related papers (2024-03-06T14:53:24Z) - Towards Efficient Quantum Computing for Quantum Chemistry: Reducing Circuit Complexity with Transcorrelated and Adaptive Ansatz Techniques [0.0]
This work demonstrates how to reduce circuit depth by combining the transcorrelated (TC) approach with adaptive quantum ans"atze.
Our study demonstrates that combining the TC method with adaptive ans"atze yields compact, noise-resilient, and easy-to-optimize quantum circuits.
arXiv Detail & Related papers (2024-02-26T15:31:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Improving fidelity of multi-qubit gates using hardware-level pulse
parallelization [0.0]
We present the parallelization of pre-calibrated pulses at the hardware level as an easy-to-implement strategy to optimize quantum gates.
We show that such parallelization leads to improved fidelity and gate time reduction, when compared to serial concatenation.
arXiv Detail & Related papers (2023-12-20T19:00:02Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Reqomp: Space-constrained Uncomputation for Quantum Circuits [4.703757073704313]
We present Reqomp, a method to automatically synthesize correct and efficient uncomputation of ancillae.
Our evaluation demonstrates that Reqomp can significantly reduce the number of required ancilla qubits by up to 96%.
arXiv Detail & Related papers (2022-12-20T16:23:04Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Ultrafast Holonomic Quantum Gates [4.354697470999286]
We propose a nonadiabatic holonomic quantum scheme with detuned interactions on $Delta$-type three-level system.
Our numerical simulations show that the gate robustness is also stronger than previous schemes.
We present an implementation of our proposal on superconducting quantum circuits, with a decoherence-free subspace encoding.
arXiv Detail & Related papers (2021-08-03T14:31:38Z) - Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable
coupler [40.456646238780195]
Two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation.
We present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control.
We experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 pm 0.07$% and $99.87 pm 0.23$%, respectively.
arXiv Detail & Related papers (2020-11-02T19:09:43Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.