Exploring the Influence of Label Aggregation on Minority Voices: Implications for Dataset Bias and Model Training
- URL: http://arxiv.org/abs/2412.04025v1
- Date: Thu, 05 Dec 2024 10:00:49 GMT
- Title: Exploring the Influence of Label Aggregation on Minority Voices: Implications for Dataset Bias and Model Training
- Authors: Mugdha Pandya, Nafise Sadat Moosavi, Diana Maynard,
- Abstract summary: We study the impact of standard label aggregation strategies on minority opinion representation in sexism detection.
We investigate the quality and value of minority annotations, and then examine their effect on the class distributions in gold labels.
We discuss the potential biases introduced by each method and how they can be amplified by the models.
- Score: 10.00533358414859
- License:
- Abstract: Resolving disagreement in manual annotation typically consists of removing unreliable annotators and using a label aggregation strategy such as majority vote or expert opinion to resolve disagreement. These may have the side-effect of silencing or under-representing minority but equally valid opinions. In this paper, we study the impact of standard label aggregation strategies on minority opinion representation in sexism detection. We investigate the quality and value of minority annotations, and then examine their effect on the class distributions in gold labels, as well as how this affects the behaviour of models trained on the resulting datasets. Finally, we discuss the potential biases introduced by each method and how they can be amplified by the models.
Related papers
- Reducing annotator bias by belief elicitation [3.0040661953201475]
We propose a simple method for handling bias in annotations without requirements on the number of annotators or instances.
We ask annotators about their beliefs of other annotators' judgements of an instance, under the hypothesis that these beliefs may provide more representative labels than judgements.
The results indicate that bias, defined as systematic differences between the two groups of annotators, is consistently reduced when asking for beliefs instead of judgements.
arXiv Detail & Related papers (2024-10-21T07:44:01Z) - Don't Blame the Data, Blame the Model: Understanding Noise and Bias When
Learning from Subjective Annotations [9.221081428960318]
We show that models that are only provided aggregated labels show low confidence on high-disagreement data instances.
Our experiments show an improvement of confidence for the high-disagreement instances.
arXiv Detail & Related papers (2024-03-06T22:30:04Z) - Adversarial Reweighting Guided by Wasserstein Distance for Bias
Mitigation [24.160692009892088]
Under-representation of minorities in the data makes the disparate treatment of subpopulations difficult to deal with during learning.
We propose a novel adversarial reweighting method to address such emphrepresentation bias.
arXiv Detail & Related papers (2023-11-21T15:46:11Z) - Capturing Perspectives of Crowdsourced Annotators in Subjective Learning Tasks [9.110872603799839]
Supervised classification heavily depends on datasets annotated by humans.
In subjective tasks such as toxicity classification, these annotations often exhibit low agreement among raters.
In this work, we propose textbfAnnotator Awares for Texts (AART) for subjective classification tasks.
arXiv Detail & Related papers (2023-11-16T10:18:32Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - Few-shot Forgery Detection via Guided Adversarial Interpolation [56.59499187594308]
Existing forgery detection methods suffer from significant performance drops when applied to unseen novel forgery approaches.
We propose Guided Adversarial Interpolation (GAI) to overcome the few-shot forgery detection problem.
Our method is validated to be robust to choices of majority and minority forgery approaches.
arXiv Detail & Related papers (2022-04-12T16:05:10Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
We show that different negative sampling schemes implicitly trade-off performance on dominant versus rare labels.
We provide a unified means to explicitly tackle both sampling bias, arising from working with a subset of all labels, and labeling bias, which is inherent to the data due to label imbalance.
arXiv Detail & Related papers (2021-05-12T15:40:13Z) - Measuring Model Biases in the Absence of Ground Truth [2.802021236064919]
We introduce a new framing to the measurement of fairness and bias that does not rely on ground truth labels.
Instead, we treat the model predictions for a given image as a set of labels, analogous to a 'bag of words' approach used in Natural Language Processing (NLP)
We demonstrate how the statistical properties (especially normalization) of the different association metrics can lead to different sets of labels detected as having "gender bias"
arXiv Detail & Related papers (2021-03-05T01:23:22Z) - Debiased Contrastive Learning [64.98602526764599]
We develop a debiased contrastive objective that corrects for the sampling of same-label datapoints.
Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks.
arXiv Detail & Related papers (2020-07-01T04:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.