Fairness-Aware Grouping for Continuous Sensitive Variables: Application for Debiasing Face Analysis with respect to Skin Tone
- URL: http://arxiv.org/abs/2507.11247v1
- Date: Tue, 15 Jul 2025 12:21:52 GMT
- Title: Fairness-Aware Grouping for Continuous Sensitive Variables: Application for Debiasing Face Analysis with respect to Skin Tone
- Authors: Veronika Shilova, Emmanuel Malherbe, Giovanni Palma, Laurent Risser, Jean-Michel Loubes,
- Abstract summary: We propose a fairness-based grouping approach for continuous (possibly multidimensional) sensitive attributes.<n>By grouping data according to observed levels of discrimination, our method identifies the partition that maximizes a novel criterion.<n>We validate the proposed approach using multiple synthetic datasets and demonstrate its robustness under changing population distributions.
- Score: 3.3298048942057523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within a legal framework, fairness in datasets and models is typically assessed by dividing observations into predefined groups and then computing fairness measures (e.g., Disparate Impact or Equality of Odds with respect to gender). However, when sensitive attributes such as skin color are continuous, dividing into default groups may overlook or obscure the discrimination experienced by certain minority subpopulations. To address this limitation, we propose a fairness-based grouping approach for continuous (possibly multidimensional) sensitive attributes. By grouping data according to observed levels of discrimination, our method identifies the partition that maximizes a novel criterion based on inter-group variance in discrimination, thereby isolating the most critical subgroups. We validate the proposed approach using multiple synthetic datasets and demonstrate its robustness under changing population distributions - revealing how discrimination is manifested within the space of sensitive attributes. Furthermore, we examine a specialized setting of monotonic fairness for the case of skin color. Our empirical results on both CelebA and FFHQ, leveraging the skin tone as predicted by an industrial proprietary algorithm, show that the proposed segmentation uncovers more nuanced patterns of discrimination than previously reported, and that these findings remain stable across datasets for a given model. Finally, we leverage our grouping model for debiasing purpose, aiming at predicting fair scores with group-by-group post-processing. The results demonstrate that our approach improves fairness while having minimal impact on accuracy, thus confirming our partition method and opening the door for industrial deployment.
Related papers
- Counterpart Fairness -- Addressing Systematic between-group Differences in Fairness Evaluation [17.495053606192375]
When using machine learning to aid decision-making, it is critical to ensure that an algorithmic decision is fair and does not discriminate against specific individuals/groups.
Existing group fairness methods aim to ensure equal outcomes across groups delineated by protected variables like race or gender.
In cases where systematic differences between groups play a significant role in outcomes, these methods may overlook the influence of non-protected variables.
arXiv Detail & Related papers (2023-05-29T15:41:12Z) - Fair Without Leveling Down: A New Intersectional Fairness Definition [1.0958014189747356]
We propose a new definition called the $alpha$-Intersectional Fairness, which combines the absolute and the relative performance across sensitive groups.
We benchmark multiple popular in-processing fair machine learning approaches using our new fairness definition and show that they do not achieve any improvement over a simple baseline.
arXiv Detail & Related papers (2023-05-21T16:15:12Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - The Unbearable Weight of Massive Privilege: Revisiting Bias-Variance
Trade-Offs in the Context of Fair Prediction [7.975779552420981]
We propose a conditional-iid (ciid) model that seeks to improve on the trade-offs made by a single model.
We empirically test our setup on the COMPAS and folktables datasets.
Our analysis suggests that there might be principled procedures and concrete real-world use cases under which conditional models are preferred.
arXiv Detail & Related papers (2023-02-17T05:34:35Z) - Aleatoric and Epistemic Discrimination: Fundamental Limits of Fairness Interventions [13.279926364884512]
Machine learning models can underperform on certain population groups due to choices made during model development and bias inherent in the data.
We quantify aleatoric discrimination by determining the performance limits of a model under fairness constraints.
We quantify epistemic discrimination as the gap between a model's accuracy when fairness constraints are applied and the limit posed by aleatoric discrimination.
arXiv Detail & Related papers (2023-01-27T15:38:20Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
This work aims to learn a fair face representation, where faces of every group could be more equally represented.
Our work is able to mitigate face recognition bias across demographic groups while maintaining the competitive accuracy.
arXiv Detail & Related papers (2020-06-13T06:43:37Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
Group fairness is a class of fairness notions that measure how different groups of individuals are treated differently according to their protected attributes.
We propose a general diagnostic that enables systematic characterization of these trade-offs in group fairness.
arXiv Detail & Related papers (2020-04-07T14:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.