論文の概要: Prompt Engineering Guidance for Conceptual Agent-based Model Extraction using Large Language Models
- arxiv url: http://arxiv.org/abs/2412.04056v1
- Date: Thu, 05 Dec 2024 10:49:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:03.986840
- Title: Prompt Engineering Guidance for Conceptual Agent-based Model Extraction using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた概念的エージェントベースモデル抽出のためのプロンプトエンジニアリングガイダンス
- Authors: Siamak Khatami, Christopher Frantz,
- Abstract要約: 本稿では,エージェント・ベース・モデリング(ABM)を実装するために必要な情報抽出にQAモデルを活用することを目的とする。
抽出された情報は、人間とコンピュータの両方で読み取れるフォーマット(例えば、JavaScript Object Notation (JSON))で表示され、人間が手動で使うことができ、Large Language Models (LLM) による自動コード生成が可能である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This document contains detailed information about the prompts used in the experimental process discussed in the paper "Toward Automating Agent-based Model Generation: A Benchmark for Model Extraction using Question-Answering Techniques". The paper aims to utilize Question-answering (QA) models to extract the necessary information to implement Agent-based Modeling (ABM) from conceptual models. It presents the extracted information in formats that can be read by both humans and computers (i.e., JavaScript Object Notation (JSON)), enabling manual use by humans and auto-code generation by Large Language Models (LLM).
- Abstract(参考訳): この文書は、論文"Toward Automating Agent-based Model Generation: A Benchmark for Model extract using Question-Answering Techniques"で論じられている実験プロセスで使用されるプロンプトに関する詳細な情報を含んでいる。
本稿では,概念モデルからエージェント・ベース・モデリング(ABM)を実装するために必要な情報を抽出するために,質問応答(QA)モデルを活用することを目的とする。
抽出された情報は、人間とコンピュータの両方で読み取ることができるフォーマット(すなわち、JavaScript Object Notation (JSON))で表示され、人間が手動で使うことができ、Large Language Models (LLM) による自動コード生成が可能である。
関連論文リスト
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys) [57.30228361181045]
この調査は、ジェネレーティブモデル(Gen-RecSys)を用いたレコメンデーションシステムにおける重要な進歩を結びつける。
対話駆動生成モデル、自然言語レコメンデーションのための大規模言語モデル(LLM)とテキストデータの使用、RSにおける画像やビデオの生成と処理のためのマルチモーダルモデルの統合。
我々の研究は、Gen-RecSysの影響と害を評価するために必要なパラダイムを強調し、オープンな課題を特定します。
論文 参考訳(メタデータ) (2024-03-31T06:57:57Z) - Instruct and Extract: Instruction Tuning for On-Demand Information
Extraction [86.29491354355356]
On-Demand Information extractは、現実世界のユーザのパーソナライズされた要求を満たすことを目的としている。
InstructIEというベンチマークを、自動生成したトレーニングデータと、人手による注釈付きテストセットの両方を含む形で提示する。
InstructIE 上に構築した On-Demand Information Extractor, ODIE をさらに発展させる。
論文 参考訳(メタデータ) (2023-10-24T17:54:25Z) - Benchmarking Large Language Models with Augmented Instructions for
Fine-grained Information Extraction [46.09887436555637]
本稿では,Large Language Models (LLMs) に適した微細なIEベンチマークデータセットを提案する。
本研究では,エンコーダ・デコーダモデル,特にT5およびFLAN-T5の広範な評価により,未知の情報型への一般化が期待できる。
論文 参考訳(メタデータ) (2023-10-08T09:41:18Z) - Prompt2Model: Generating Deployable Models from Natural Language
Instructions [74.19816829003729]
大規模言語モデル(LLM)により、システムビルダーはプロンプトによって有能なNLPシステムを作成することができる。
言い換えれば、LSMは従来の特殊目的のNLPモデルとは逆のステップである。
本稿では,LLMに提供されるプロンプトのように自然言語によるタスク記述を行う汎用手法であるPrompt2Modelを提案する。
論文 参考訳(メタデータ) (2023-08-23T17:28:21Z) - Key Information Extraction From Documents: Evaluation And Generator [3.878105750489656]
本研究プロジェクトは,文書からの情報抽出のための最先端モデルと比較する。
その結果,NLPに基づく事前処理はモデル性能に有益であることが示唆された。
境界ボックス回帰デコーダの使用により、長方形に従わないフィールドに対してのみモデル性能が向上する。
論文 参考訳(メタデータ) (2021-06-09T16:12:21Z) - Conditional Generative Models for Counterfactual Explanations [0.0]
本稿では,分散的非分布的モデル記述を生成する汎用フレームワークを提案する。
このフレームワークは、使用される生成モデルの種類や基礎となる予測モデルのタスクに関して柔軟である。
論文 参考訳(メタデータ) (2021-01-25T14:31:13Z) - GRIT: Generative Role-filler Transformers for Document-level Event
Entity Extraction [134.5580003327839]
本稿では、文書レベルでコンテキストをモデル化するための生成トランスフォーマーベースのエンコーダデコーダフレームワーク(GRIT)を紹介する。
我々は,MUC-4データセットに対する我々のアプローチを評価し,我々のモデルが先行作業よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-08-21T01:07:36Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
本稿では,人間の読みやすいエンティティ表現を作成し,箱から高パフォーマンスを実現する手法を提案する。
我々の表現は、微粒な実体型に対する後続確率に対応するベクトルである。
特定のドメインに対して,学習に基づく方法で,型セットのサイズを縮小できることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:58:03Z) - Asking the Right Questions: Learning Interpretable Action Models Through
Query Answering [33.08099403894141]
本稿では,ブラックボックス型自律エージェントの解釈可能なリレーショナルモデルを設計・動作可能な新しいアプローチを開発する。
我々の主な貢献は、エージェントとの最小クエリインタフェースを用いてそのようなモデルを推定するための新しいパラダイムと、エージェントの内部モデルを推定するための尋問ポリシーを生成する階層的なクエリアルゴリズムである。
論文 参考訳(メタデータ) (2019-12-29T09:05:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。