論文の概要: ZipAR: Accelerating Autoregressive Image Generation through Spatial Locality
- arxiv url: http://arxiv.org/abs/2412.04062v1
- Date: Thu, 05 Dec 2024 10:57:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:42:21.584729
- Title: ZipAR: Accelerating Autoregressive Image Generation through Spatial Locality
- Title(参考訳): ZipAR:空間的局所性による自己回帰画像生成の高速化
- Authors: Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, Bohan Zhuang,
- Abstract要約: ZipARは、自動回帰(AR)ビジュアル生成のためのトレーニング不要でプラグ&プレイの並列デコーディングフレームワークである。
ZipARは、追加の再トレーニングを必要とせずに、Emu3-Genモデルでモデル転送回数を最大91%削減できる。
- 参考スコア(独自算出の注目度): 19.486745219466666
- License:
- Abstract: In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding framework for accelerating auto-regressive (AR) visual generation. The motivation stems from the observation that images exhibit local structures, and spatially distant regions tend to have minimal interdependence. Given a partially decoded set of visual tokens, in addition to the original next-token prediction scheme in the row dimension, the tokens corresponding to spatially adjacent regions in the column dimension can be decoded in parallel, enabling the ``next-set prediction'' paradigm. By decoding multiple tokens simultaneously in a single forward pass, the number of forward passes required to generate an image is significantly reduced, resulting in a substantial improvement in generation efficiency. Experiments demonstrate that ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining.
- Abstract(参考訳): 本稿では,自動回帰(AR)視覚生成の高速化を目的とした,トレーニングフリーでプラグイン・アンド・プレイ並列デコーディングフレームワークZipARを提案する。
モチベーションは、画像が局所的な構造を示し、空間的に離れた地域は最小の相互依存性を持つ傾向にあるという観察に起因している。
部分復号化された視覚トークンが与えられた場合、行次元における元の次トーケン予測スキームに加えて、列次元における空間隣接領域に対応するトークンを並列に復号化することができ、`next-set prediction'パラダイムが実現される。
複数のトークンを1つのフォワードパスで同時に復号することで、画像を生成するのに必要なフォワードパスの数が大幅に減少し、生成効率が大幅に向上する。
実験によると、ZipARは追加の再トレーニングを必要とせずに、Emu3-Genモデルでモデル転送回数を最大91%削減できる。
関連論文リスト
- Boosting Few-Shot Detection with Large Language Models and Layout-to-Image Synthesis [1.1633929083694388]
本稿では,最先端な生成的拡張アプローチを超越した,少数ショット検出のためのフレームワークを提案する。
我々は,新しいレイアウト対応CLIPスコアをサンプルランキングに導入し,生成したレイアウトと画像の密結合を可能にする。
アプローチでは,COCO5-,10-,30ショット設定でYOLOX-Sベースラインを140%以上,50%,35%のmAPで強化する。
論文 参考訳(メタデータ) (2024-10-09T12:57:45Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
実験により,提案手法が投機的復号化よりも大幅に高速化されたことを示す。
LANTERNは、greedyデコーディングやランダムサンプリングと比較して、$mathbf1.75times$と$mathbf1.76times$のスピードアップを増大させる。
論文 参考訳(メタデータ) (2024-10-04T12:21:03Z) - Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding [60.188309982690335]
本稿では,自動回帰テキスト・画像生成を高速化するために,訓練不要な確率的並列デコーディングアルゴリズムであるSpeculative Jacobi Decoding (SJD)を提案する。
確率収束基準を導入することにより、サンプリングベースのトークン復号におけるランダム性を維持しつつ、自動回帰テキスト・画像生成の推論を高速化する。
論文 参考訳(メタデータ) (2024-10-02T16:05:27Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - SA$^2$VP: Spatially Aligned-and-Adapted Visual Prompt [59.280491260635266]
視覚的プロンプトチューニングの方法は、NLPから派生した逐次モデリングパラダイムに従う。
マイモデルモデルは、画像トークンマップに等しい大きさ(またはスケールした)の2次元プロンプトトークンマップを学習する。
我々のモデルは、個々の画像トークンをきめ細かな方法でプロンプトすることができる。
論文 参考訳(メタデータ) (2023-12-16T08:23:43Z) - Cascaded Cross-Attention Networks for Data-Efficient Whole-Slide Image
Classification Using Transformers [0.11219061154635457]
全スライディングイメージングは、組織標本の高解像度画像のキャプチャとデジタル化を可能にする。
高解像度情報を効果的に活用するための候補としてトランスフォーマーアーキテクチャが提案されている。
本稿では,抽出されたパッチ数と線形にスケールするクロスアテンション機構に基づく新しいカスケード型クロスアテンションネットワーク(CCAN)を提案する。
論文 参考訳(メタデータ) (2023-05-11T16:42:24Z) - Progressive Text-to-Image Generation [40.09326229583334]
本稿では,高忠実度テキスト・画像生成のためのプログレッシブモデルを提案する。
提案手法は, 既存のコンテキストに基づいて, 粗い画像から細かな画像への新しい画像トークンの作成によって効果を発揮する。
結果として得られた粗大な階層構造により、画像生成プロセスは直感的で解釈可能である。
論文 参考訳(メタデータ) (2022-10-05T14:27:20Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
本稿では,動的スパースアテンションに基づくトランスフォーマーモデルを提案する。
このアプローチの核心は、ある位置がフォーカスすべき最適なトークン数の変化をカバーすることに特化した、新しいダイナミックアテンションユニットです。
3つの応用、ポーズ誘導型人物画像生成、エッジベース顔合成、歪みのない画像スタイル転送の実験により、DynaSTは局所的な詳細において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-07-13T11:12:03Z) - LiP-Flow: Learning Inference-time Priors for Codec Avatars via
Normalizing Flows in Latent Space [90.74976459491303]
実行時入力に条件付けされた先行モデルを導入し、この先行空間を潜伏空間の正規化フローを介して3次元顔モデルに結びつける。
正規化フローは2つの表現空間をブリッジし、潜在サンプルをある領域から別の領域に変換することで、潜在可能性の目的を定義する。
提案手法は,表情のダイナミックスや微妙な表現をよりよく捉えることによって,表現的かつ効果的に先行することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:22:57Z) - Scalable Visual Transformers with Hierarchical Pooling [61.05787583247392]
本稿では,視覚的トークンを徐々にプールしてシーケンス長を縮小する階層的ビジュアルトランスフォーマ(hvt)を提案する。
計算の複雑さを増すことなく、深さ/幅/解像度/パッチサイズの寸法をスケールすることで、大きなメリットをもたらします。
当社のHVTはImageNetとCIFAR-100データセットの競合ベースラインを上回っています。
論文 参考訳(メタデータ) (2021-03-19T03:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。